
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu)

Guest instructor: Carl Miller (camiller@umd.edu), ATL 3100K

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there.

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL – inside JQI)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL – inside JQI)

Homework 4 was posted 
today, and is due March 12.

http://umd.edu
http://umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/


READING FOR TODAY

We were skipping two subsections.  I decided to drop subsection 11.5.4 also.  
(You won’t be responsible for the material there.)



RECAP: DIFFIE-HELLMAN KEY EXCHANGE

G = cyclic group with generator g.

Alice chooses random 𝑥 and sends 𝑔! to Bob.

Bob chooses random 𝑦 and sends 𝑔" to Alice.

Alice computes 𝑔" ! = 𝑔!". Bob computes 𝑔! " = 𝑔!".

They then have a shared secret.

𝑔!

𝑥 𝑦𝑔"

𝑔!" 𝑔!"

Adversary



RECAP: FORMAL MODELS OF PUBLIC-KEY CRYPTO

We went through various definitions of 
security for public-key crypto.

All of them were based on 
indistinguishability experiments.
• IND-CPA for public-key encryption

• IND-CCA for public-key encryption
• CPA for key encapsulation

CPA = “chosen plaintext attack”

CCA = “chosen ciphertext attack”
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PLAN FOR TODAY

1.   El Gamal encryption

2. RSA encryption revisited.

3.   The impact of Shor’s algorithm on cryptography.

We are going to overview 
some security proofs from the 
textbook. 



EL GAMAL ENCRYPTION



EL GAMAL (PUBLIC-KEY ENCRYPTION)

Let G be a PPT algorithm that, on input 1., generates (G,q,g).

𝐆𝐞𝐧: Alice runs G, broadcasts result.

She chooses random 𝑥 ∈ 1,2, … , 𝑞 and sends 𝑔!.
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EL GAMAL (PUBLIC-KEY ENCRYPTION)

𝐄𝐧𝐜: Bob computes his message 𝑚 ∈ 𝐺. 

He chooses random y ∈ 1,2, … , 𝑞 and sends 𝑔" and 𝑐 ≔ 𝑔! "6 𝑚. 

𝐃𝐞𝐜: Alice computes:
𝑐 6 𝑔" /0 ! = 𝑔!"𝑚 6 𝑔/!"= 𝑚.

𝑔!

𝑥

Adversary

𝑔" , 𝑐
Correct 

decryption is 
guaranteed by 

the defining 
properties of a 

cyclic group 
(last lecture).

𝑚



SECURITY PROOFS

Our security proofs should have:

- Clearly identified algorithms.
The procedures used in algorithms may sometimes be unspecified 
(e.g., G), but parameters should be fully stated.

- Precisely stated computational hardness assumptions.
- Rigorous logical steps from assumptions to conclusion.



THE DECISIONAL DIFFIE-HELLMAN PROBLEM

Experiment:
1. Generate (𝐺, 𝑞, 𝑔) from G.
2. Draw random 𝑏 ← 0,1 and 𝑥, 𝑦, 𝑧 ← {1,… , 𝑡}.
3. If 𝑏 = 0, give 𝑔!, 𝑔", 𝑔!" to 𝑨;

4. If 𝑏 = 1, give 𝑔!, 𝑔", 𝑔2 to 𝑨;
5. 𝑨 returns 𝑏′ ∈ 0,1 .

Definition. The DDH problem is hard relative to G if, for any PPT 𝑨, 
| Pr 𝑨 = 1|b = 0 − Pr 𝑨 = 1 𝑏 = 1 | ≤ negl 𝑛 .
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SECURITY CLAIM

Theorem: If the DDH problem is hard relative to G, then the El Gamal encryption 
scheme is IND-CPA secure.

Proof sketch:
We want to prove that Eve has no better 
than a negligible advantage of guessing 𝑏
in this experiment.
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SECURITY CLAIM

Theorem: If the DDH problem is hard relative to G, then the El Gamal encryption 
scheme is IND-CPA secure.

Proof sketch:
We want to prove that Eve has no better 
than a negligible advantage of guessing 𝑏
in this experiment.

Suppose we were to modify: replace 𝑔!"
with a uniformly random element 𝑔2.

Eve now gets no information at all about b, 
so her probability of a correct guess is ½.

And by DDH, the outcome of Experiment 
F is only negligibly different from 
Experiment E! 
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RSA ENCRYPTION REVISITED



A QUICK “PRIMER” ON PRIME FACTORIZATION

Every positive integer has a unique factorization into primes

𝑛 = 27! 6 37"6 57#6 77$6 ⋯
𝑚 = 28! 6 38"6 58#6 78$6 ⋯

Multiplication and exponentiation are easy:

𝑛𝑚 = 27!98! 6 37"98"6 57#98#6 77$98$6 ⋯
𝑛: = 2:7! 6 3:7"6 5:7#6 7:7$6 ⋯

Exercise: How many factors does 2; 6 3< have?

Prime factorizations are easy to work with, but sometimes very hard to find!



A QUOTE FROM A MATHEMATICAL ANTI-HERO

“If useful knowledge is […] knowledge which is likely 
[…] to contribute to the material comfort of 
mankind […] then the great bulk of higher 
mathematics is useless. Modern geometry and 
algebra, the theory of numbers, the theory of 
aggregates and functions, relativity, quantum 
mechanics—no one of them stands the test much 
better than another […]”

-- G. H. Hardy, A Mathematician’s
Apology, 1940

Negative predictions are dangerous…

Source: www.wikipedia.org



GenRSA:
Let n = security parameter.

1. Alice generates two random primes p,q of length n, and computes N=pq.

2. Alice chooses random 𝑒 ∈ ℤ =/0 >/0
∗ and computes its multiplicative inverse (d).

SINGLE-BIT RSA ENCRYPTION

𝑚 ∈ {0,1}

𝑁, 𝑒

𝑑



Enc:
1. Bob chooses random 𝑟 ∈ ℤ@∗ such that 𝑙𝑠𝑏 𝑟 = 𝑚.

2. He computes 𝑐 ≔ [𝑟A mod N].

Dec:

1.   Alice computes 𝑟 = 𝑐B mod N , recovers 𝑚.

SINGLE-BIT RSA ENCRYPTION

𝑚 ∈ {0,1}

𝑁, 𝑒

𝑑
“lsb(r)” means [r mod 2].

𝑐



A “HARD-CORE” RSA ASSUMPTION

𝑨

𝑁

𝑮𝒆𝒏𝑹𝑺𝑨
𝑒

𝑥 ← ℤ(∗

𝑦 ≔ 𝑥* 𝑚𝑜𝑑 𝑁

𝑁
𝑒 𝑏
𝑦

Experiment:
1. Run GenRSA to obtain 𝑁, 𝑒.
2. Compute random 𝑥 ∈ ℤ@∗ .

3. Send 𝑁, 𝑒, and [𝑥A mod 𝑁] to 𝐴.
4. 𝐴 outputs bit 𝑏.

𝐴 wins if 𝑏 = 𝑙𝑠𝑏 𝑥 .

Assumption. The probability that 𝐴 wins is ≤ 0
N+ negl 𝑛 .



SECURITY CLAIM

Theorem: If the hard-core RSA assumption holds, then single-bit RSA is IND-CPA 
secure.

Proof sketch:
Consider the IND-CPA experiment.  (The 
bit b is chosen at random.)
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SECURITY CLAIM

Theorem: If the hard-core RSA assumption holds, then single-bit RSA is IND-CPA 
secure.

Proof sketch:
Consider the IND-CPA experiment.  (The 
bit b is chosen at random.)

Suppose that Eve has a non-neg. 
advantage.
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SECURITY CLAIM

Theorem: If the hard-core RSA assumption holds, then single-bit RSA is IND-CPA 
secure.

Proof sketch:
Consider the IND-CPA experiment.  (The 
bit b is chosen at random.)

Suppose that Eve has a non-neg. 
advantage.

We can assume that 𝑚S = 0, 𝑚0 = 1.
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SECURITY CLAIM

Theorem: If the hard-core RSA assumption holds, then single-bit RSA is IND-CPA 
secure.

Proof sketch:
Consider the IND-CPA experiment.  (The 
bit b is chosen at random.)

Suppose that Eve has a non-neg. 
advantage.

We can assume that 𝑚S = 0, 𝑚0 = 1.

0
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SECURITY CLAIM

Theorem: If the hard-core RSA assumption holds, then single-bit RSA is IND-CPA 
secure.

Proof sketch:
Consider the IND-CPA experiment.  (The 
bit b is chosen at random.)

Suppose that Eve has a non-neg. 
advantage.

We can assume that 𝑚S = 0, 𝑚0 = 1.

The gray box is the same (up to negligible 
probability) as the one from the hard-core 
RSA assumption!  (With 𝑏 ≔ 𝑙𝑠𝑏 𝑥 .)
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SECURITY CLAIM

Theorem: If the hard-core RSA assumption holds, then single-bit RSA is IND-CPA 
secure.

Proof sketch:
Consider the IND-CPA experiment.  (The 
bit b is chosen at random.)

Suppose that Eve has a non-neg. 
advantage.

We can assume that 𝑚S = 0, 𝑚0 = 1.

The gray box is the same (up to negligible 
probability) as the one from the hard-core 
RSA assumption!  (With 𝑏 ≔ 𝑙𝑠𝑏 𝑥 .)

The adversary can achieve a non-
negligible advantage at the hard-core RSA 
experiment.   Contradiction.

𝑁, 𝑒′
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CONCLUSION

We defined & sketched security proofs for El Gamal and RSA encryption.

In these miniature security proofs, the underlying assumption looks similar to the 
security claim itself.  In longer security proofs, the two claims may look pretty 
different.

Security proofs are good for judging and comparing different protocols. 



EPILOGUE

RSA is one of the most widely used cryptosystems today.  

However, it is not the cryptosystem of the future.  Why?



Digital Computing Bits

Randomized Computing Random
bits

Quantum Computing Qubits

0 1

0 1

10

In theory, a quantum computer can factor numbers in polynomial 
time, breaking RSA.   (Shor’s algorithm.)

EPILOGUE



EPILOGUE

“There is strong commercial interest in deploying post-quantum cryptography even before 
such a quantum computer has been built. Companies and governments cannot afford to have 
their private communications decrypted in the future, even if that future is 30 years away. For 
this reason, there is a need to begin the transition to post-quantum cryptography as soon as 
possible.”

-- Quantum Computing: Progress and Prospects
National Academies of Sciences, Engineering, and Medicine



EPILOGUE

NIST is preparing to write “postquantum” cryptographic standards.


