
MATH/CMSC 456 :: UPDATED COURSE INFO
Instructor: Gorjan Alagic (galagic@umd.edu)

Guest instructor: Carl Miller (camiller@umd.edu), ATL 3100K

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there.

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL – inside JQI)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL – inside JQI)

Current readings:

Mar 3: 359-372, 375-382, 387-399

Mar 5: pp. 399-432 (skip
subsections 11.4.3 and 11.5.5)

http://umd.edu
http://umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

RECAP: EFFICIENT OPERATIONS MOD q

Efficient to
compute?

Efficient to
invert?

Addition YES YES

Multiplication YES YES

Exponentiation YES ?

ℤ" = the set of remainders mod q.

We found that exponentiation is efficient to invert if q is prime.
If q is not prime, it may be very difficult.

Protocol:

1. Alice generates random 𝑞 = 𝑟𝑠 (r,s = primes) and random 𝑥 ∈ 1,2, … , 𝜙 𝑞 − 1 .
2. She computes 𝑦 = 𝑥01 mod 𝜙(𝑞). (If it doesn’t exist, restart.)

3. Bob transmits ciphertext c = [𝑚: mod 𝑞].
4. Alice computes “plaintext” 𝑐= = 𝑚:= = 𝑚1 𝑚𝑜𝑑 𝑞.

Idea: There is no obvious way for the Adv. to compute y.

RECAP: A TOY VERSION OF RSA ENCRYPTION

𝑞, 𝑥

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑚

[𝑚: mod 𝑞]

Adversary

𝑞 ≔ 𝑟𝑠

𝜙 𝑞 = # of elements
𝑎 ∈ ℤ" such that
gcd 𝑎, 𝑞 = 1.

PLAN FOR THIS WEEK

1. Diffie-Hellman key-exchange.

2. Formal models of public-key encryption.

3. RSA encryption revisited.

4. The impact of Shor’s algorithm on cryptography.

TODAY

DIFFIE-HELLMAN KEY EXCHANGE

SOME REMARKS ON MOTIVATION

With RSA, we used multiplication in ℤ" to build a cryptosystem. Why can’t we
just use a different algebraic structure instead?

Today we’ll define a large class of algebraic structures (groups).
We’ll use them to define a cryptosystem (Diffie-Hellman) which is related to, but
different from, RSA.

“𝒂𝒃𝒔𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏:”

Merriam-Webster definition:
“the art or process of abstracting”

Well, that was helpful. Trying again:

“𝒂𝒃𝒔𝒕𝒓𝒂𝒄𝒕: ”
“expressing a quality apart from an object.”

GROUPS

A group G is a set with a binary operation (” R ”) which has “multiplication-like”
properties. Specifically, it has:

• Associativity: 𝑎 R 𝑏 R 𝑐 = 𝑎 R (𝑏 R 𝑐)
• Identity: There exists e such that 𝑎 R 𝑒 = 𝑎 for all 𝑎.
• Inverses: For every 𝑎, there exists 𝑏 such that 𝑎 R 𝑏 = 𝑒.

Examples:
• The real numbers (under addition).
• The set ℤ" (under addition).
• Is ℤ" under multiplication a group?

No – but the set of all elements of that have multiplicative
inverses (ℤ𝒒∗), is!

CYCLIC GROUPS

We’ll write 𝑎𝑏 for 𝑎 R 𝑏 , and 𝑎V for 𝑎 R 𝑎 R ⋯ R 𝑎 (𝑛 times).

An group G is a cyclic group if there is a single 𝑎 such that all elements in G
can be expressed as 𝑎Y for some 𝑖.

Example: We know (from last week) that the set ℤ11∗ is cyclic (𝑎 = 2).

Exercise: Find some 𝑞 such that ℤ"∗ is not cyclic.

KEY EXCHANGE

In this paradigm, Alice and Bob are merely trying to generate a shared random key
through public communication.

𝑘𝑘

Adversary

DIFFIE-HELLMAN KEY EXCHANGE

Let G be a cyclic group, of size t, with generator g. (Public.)

Alice chooses random 𝑥 ∈ {1,2, … , 𝑡} and sends 𝑔: to Bob.

Bob chooses random 𝑦 ∈ {1,2, … , 𝑡} and sends 𝑔= to Alice.

Alice computes 𝑔= : = 𝑔:=. Bob computes 𝑔: = = 𝑔:=.

They now have a shared secret!

𝑔:

𝑥 𝑦𝑔=

𝑔:= 𝑔:=

Exercise:
Compute these
values for 𝐺 = ℤ11∗ ,
g=2,x=3,y=4.

Adversary

DIFFIE-HELLMAN KEY EXCHANGE

When is this protocol secure?

Better question: What would we have to assume in order to make this secure?

𝑔:

𝑥 𝑦𝑔=

𝑔:= 𝑔:=

Adversary

THE DECISIONAL DIFFIE-HELLMAN PROBLEM

Let G be an oracle that, on input 1V, generates a
cyclic group (G,q). (𝑡 := size of 𝐺.)

𝑛 = “security parameter.”
1V = 11…1 (𝑛 times)

Why?
To satisfy this standard definition:
“efficient” = “polynomial time in
the length of the input.”

THE DECISIONAL DIFFIE-HELLMAN PROBLEM

Let G be an oracle that, on input 1V, generates a
cyclic group (G,g). (𝑡 := size of 𝐺.)

Experiment:

1. Draw random 𝑏 ← 0,1 and 𝑥, 𝑦, 𝑧 ← {1, … , 𝑡}.
2. If 𝑏 = 0, give 𝑔:, 𝑔=, 𝑔:= to 𝑨 (adversary);
3. If 𝑏 = 1, give 𝑔:, 𝑔=, 𝑔k to 𝑨;
4. 𝑨 returns 𝑏′ ∈ 0,1 .

Definition. The DDH problem is hard relative to G if, for any PPT 𝑨,
| Pr 𝑨 = 1|b = 0 − Pr 𝑨 = 1 𝑏 = 1 | ≤ negl 𝑛 .

𝑔:

𝑨 𝑏′

𝑨 𝑏′

𝑏 = 0

𝑏 = 1

𝑔=

𝑔:=

𝑔:

𝑔=

𝑔k

DIFFIE-HELLMAN KEY EXCHANGE

Chapter 10 proves that if the DDH problem is hard, then the Diffie-Hellman Key
Exchange protocol is secure (short proof).

Although the only group we’ve really worked with so far is ℤ"∗ , DH can be done with
other groups (such as elliptic curves, subsection 8.3.4).

FORMAL MODELS OF PUBLIC-KEY ENCRYPTION

PHILOSOPHY

We want to show that our cryptosystems are secure in a wide range of
scenarios.

Therefore, we set up an “experiment,” giving the adversary a lot of power in
attempting to break the cryptosystem, and ask whether it is still secure.

The adversary always has:

• Polynomial-time computation ability.
• Full knowledge of protocol design.

• Access to all public information.

In some circumstances, we give the adversary even more freedom.

RECALL: “IND” SECURITY FOR SECRET KEY ENCRYPTION

Say our secret-key protocol is 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜 .

Indistinguishability experiment (IND).

1. Sample 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧 and 𝑏 ← 0,1 ;
2. 𝐴 outputs two equal-length messages 𝑚},𝑚1;

3. Give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜~ 𝑚� ;
4. 𝑨 outputs a bit 𝑏′.
We say 𝑨 wins if 𝑏 = 𝑏′.

Definition. Our scheme has indistinguishable ciphertexts if, for every PPT
adversary 𝑨,

Pr 𝑨 wins ≤
1
2
+ negl 𝑛 .

𝑚}

𝑚1

𝑨
𝐄𝐧𝐜~ 𝑚�

𝑨

𝑏′

𝑐
𝑐

RECALL: IND-CPA SECURITY FOR SECRET KEY ENCRYPTION

We give A access to 𝐄𝐧𝐜~ (as an oracle).

Indistinguishability experiment (IND).

1. Sample 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧 and 𝑏 ← 0,1 ;
2. 𝐴 outputs two equal-length messages 𝑚},𝑚1;

3. Give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜~ 𝑚� ;
4. 𝑨 outputs a bit 𝑏′.
We say 𝑨 wins if 𝑏 = 𝑏′.

Definition. Our scheme is IND-CPA secure if, for every PPT adversary 𝑨,

Pr 𝑨 wins ≤
1
2
+ negl 𝑛 .

𝐄𝐧𝐜~ 𝐄𝐧𝐜~

𝑚}

𝑚1

𝑨
𝐄𝐧𝐜~ 𝑚�

𝑨

𝑏′

𝑐
𝑐

IND-CPA SECURITY FOR PUBLIC KEY ENCRYPTION

We give A the public key.

Indistinguishability experiment (IND).

1. Sample 𝑝𝑘, 𝑠𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧 and 𝑏 ← 0,1 ;
2. 𝐴 outputs two equal-length messages 𝑚},𝑚1;

3. Give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜~ 𝑚� ;
4. 𝑨 outputs a bit 𝑏′.
We say 𝑨 wins if 𝑏 = 𝑏′.

Definition. Our scheme is IND-CPA secure if, for every PPT adversary 𝑨,

Pr 𝑨 wins ≤
1
2
+ negl 𝑛 .

𝑚}

𝑚1

𝑨
𝐄𝐧𝐜�~ 𝑚�

𝑨

𝑏′

𝑐
𝑐

𝑝𝑘

Question: Why doesn’t this
strategy always win?:

• 𝑨 computes 𝐄𝐧𝐜�~ 𝑚} . If
it’s equal to c she returns
𝑏� = 0; otherwise, 𝑏� = 1.

Answer: 𝐸𝑛𝑐 may use
randomness and may encrypt
𝑚} in multiple ways.

PHILOSOPHY (CONTINUED)

The nuances of the experiment matter.

Sometimes different experiments turn out to be equivalent. Sometimes, not.

CPA = ”chosen plaintext attack”

CCA = “chosen ciphertext attack”

IND-CCA SECURITY FOR PUBLIC KEY ENCRYPTION

A has access to a decryption oracle.

1. Sample 𝑝𝑘, 𝑠𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧 and 𝑏 ← 0,1 ;
2. Give 𝑝𝑘 to 𝑨, who returns equal-length

messages 𝑚},𝑚1;

3. Give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜~ 𝑚� ;
4. 𝑨 outputs a bit 𝑏′.
(A is not allowed to decrypt c.)

Definition. Our scheme is IND-CCA secure if, for every PPT adversary 𝑨,

Pr 𝑨 wins ≤
1
2
+ negl 𝑛 .

𝑚}

𝑚1

𝑨
𝐄𝐧𝐜�~ 𝑚�

𝑨

𝑏′

𝑐
𝑐

𝑝𝑘

𝐃𝐞𝐜~
(input ≠ 𝒄)𝐃𝐞𝐜~

NEW TASK: KEY ENCAPSULATION

Goal: Through public dialogue, share a bit string 𝑘 that is uniformly random from
the perspective of the adversary.

𝐆𝐞𝐧 input = 1V output = keypair (𝑝𝑘, 𝑠𝑘)
𝐄𝐧𝐜𝐚𝐩𝐬 input = 1V and 𝑝𝑘 output = key (𝑘) and ciphertext 𝑐
De𝐜𝐚𝐩𝐬 input = 𝑠𝑘 and 𝑐 output = key (𝑘)

𝑘𝑠𝑘

𝑝𝑘

𝑐

𝑘

NEW TASK: KEY ENCAPSULATION

KEM = “key encapsulation mechanism”

One can do KEM → secret-key encryption. The effect is similar to public-key
encryption, and can be more efficient.

𝑘

𝑝𝑘

𝑐

𝑠𝑘 𝑘

CPA SECURITY FOR KEMs

1. Carry out the KEM to obtain 𝑝𝑘, 𝑠𝑘, 𝑐, 𝑘;
2. Draw random 𝑏 ← 0,1 ;
3. If 𝑏 = 0, give 𝑘, 𝑐, 𝑝𝑘 to 𝑨;
4. If 𝑏 = 1, generate a uniformly random bit

string 𝑢 (same length) and give 𝑢, 𝑐, 𝑝𝑘 to
𝑨;

5. 𝑨 returns 𝑏′.

We say that 𝑨 “wins” if 𝑏 = 𝑏′.

Definition. The scheme is CPA secure if, for every PPT adversary 𝑨,

Pr 𝑨 wins ≤
1
2
+ negl 𝑛 .

𝑘

𝑨 𝑏′

𝑨 𝑏′

𝑏 = 0

𝑏 = 1

𝑝𝑘
𝑐

𝑢
𝑝𝑘
𝑐

SUMMING UP

• We “abstracted” the underlying hardness of RSA encryption, and defined the
concept of a “group.”

• We defined Diffie-Hellman key exchange (a general framework).

• We stated various formal definitions of security for public-key encryption.

Coming up: A deeper look at RSA.

