
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (slides, reading posted here);

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there, homework 2 due midnight Tonight.

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL – inside JQI)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL – inside JQI)

You can use AVW 4172
as a waiting room.

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/


RECAP: Merkle-Damgård transform

.

𝓗

𝑥1

0𝑛
𝓗

𝑥2

𝓗

𝑥3

… 𝓗

𝑥ℓ+1

ℋMD 𝑥

Construction (Merkle-Damgård).
Let 𝐊𝐞𝐲𝐆𝐞𝐧H,ℋ be a hash function, and suppose ℋ: 0,1 2𝑛 → 0,1 𝑛. Define a new hash function:

• 𝐊𝐞𝐲𝐆𝐞𝐧HMD
: same as 𝐊𝐞𝐲𝐆𝐞𝐧H;

• ℋMD: 0,1
∗ → 0,1 𝑛 defined as follows, on input 𝑥:

1. assume length |𝑥| of 𝑥 is divisible by 𝑛 (otherwise pad with 0s);
2. split 𝑥 as 𝑥 = (𝑥1, 𝑥2, … , 𝑥ℓ) and set 𝑥ℓ+1 ≔ |𝑥|.
3. set 𝑧0 = 0𝑛; compute 𝑧𝑖 = ℋ(𝑥𝑖 , 𝑧𝑖−1);
4. output 𝑧ℓ+1 .

𝑧0 𝑧1 𝑧2 𝑧ℓ 𝑧ℓ+1



RECAP: Merkle-Damgård transform

Remember:

• critical property we needed for integrity checks…

• … and for Hash-and-MAC…

• … was collision-resistance!

What happens when we apply MD?

See book for proof. It’s fairly straightforward.

Theorem. If ℋ is a collision-free hash function, then so is its Merkle-Damgård transform ℋMD.



RECAP: RANDOM ORACLES

Interesting:

It seems like hash functions behave like random oracles!

It’s as if someone sampled a uniformly random function 𝑹…

… and then put it in an oracle!

1. Define 𝑹: 0,1 n → 0,1 𝑛

by setting 𝑹 𝑥 ← 0,1 𝑛 for each 𝑥.

2. Put 𝑹 “into a box” so everyone
can query it, but only as an oracle.

𝑹𝑥 𝑹(𝑥)

A strong hash function (like SHA-3) 
is developed and standardized.

LOOKS LIKE



RECAP: RANDOM ORACLES ⇒ collision-resistant hashing

Random Oracle Model (ROM).

What crypto can we build in this model?

Collision-resistant hash:

• recall: random functions are collision-resistant;

• (because preimages are uniformly distributed)

• so 𝑹 itself serves as a collision-resistant hash;

• if we want small outputs, can discard bits of output.

Note:

• this is now statistical collision-resistance;

• for normal hash functions, it was computational (i.e., against PPT adversaries.)

• remember: collision-resistant ⇒ one-way. So we also get one-way functions!

1. Define 𝑹: 0,1 n → 0,1 𝑛

by setting 𝑹 𝑥 ← 0,1 𝑛 for each 𝑥.

2. Put 𝑹 “into a box” so everyone
can query it, but only as an oracle.

𝑹𝑥 𝑹(𝑥)



RECAP: RANDOM ORACLES ⇒ PRFs

Random Oracle Model (ROM).

What crypto can we build in this model?

Pseudorandom functions:

• sample a key: 𝑘 ← 0,1 𝑛/2;

• define 

𝑭𝑘: 0,1
𝑛/2 → 0,1 𝑛/2

𝑭𝑘 𝑥 ≔ 𝑹(𝑥, 𝑘)

Why is it pseudorandom? Note: 𝑨 knows 𝑹!

1. take any algorithm 𝑨𝑭𝑘 . It makes some query 𝑥1;

2. Pr 𝑥1 = 𝑧, 𝑘 = 2−𝑛/2 for any 𝑧; so response is uniformly random in 0,1 𝑛/2;

3. in particular, 𝑨𝑭𝑘 learned nothing with the first query. 

4. so we can repeat the argument starting from 1.

1. Define 𝑹: 0,1 n → 0,1 𝑛

by setting 𝑹 𝑥 ← 0,1 𝑛 for each 𝑥.

2. Put 𝑹 “into a box” so everyone
can query it, but only as an oracle.

𝑹𝑥 𝑹(𝑥)

𝑹

𝑛 bits

…

(0⋯00, 𝑘)

(0⋯01, 𝑘)

so 𝑭𝑘 is oracle indistinguishable
from a random function!



RECAP: RANDOM ORACLES ⇒ lots of stuff

Random Oracle Model (ROM).

What crypto can we build in this model?

ROM

collision-resistant hashPRFPRG

IND-CPA
encryption

unforgeable MAC
(fixed-length)

unforgeable MAC
(arbitrary-length)

?



RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

KeyGen:

I. Sample 2ℓ random inputs to 𝑹:

• 𝑥1
0, 𝑥2

0, 𝑥3
0, … , 𝑥ℓ

0.

• 𝑥1
1, 𝑥2

1, 𝑥3
1, … , 𝑥ℓ

1.

Note each 𝑥𝑗
𝑏 ∈ 0,1 𝑛.

II. Now compute, for each 𝑗, 𝑏:

𝑦𝑗
𝑏 ≔ 𝑹 𝑥𝑗

𝑏 ;

III. Output key consisting of two parts:

1. 𝑥1
0, 𝑥2

0, 𝑥3
0, … , 𝑥ℓ

0 and 𝑥1
1, 𝑥2

1, 𝑥3
1, … , 𝑥ℓ

1;

2. 𝑦1
0, 𝑦2

0, 𝑦3
0, … , 𝑦ℓ

0 and 𝑦1
1, 𝑦2

1, 𝑦3
1, … , 𝑦ℓ

1;

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

IMPORTANT!
NEW IDEAS!



RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

Mac:

On input a message 𝑚 ∈ 0,1 ℓ:

Output tag 𝑡 ∈ 0,1 𝑛ℓ like this:

For each bit position 𝑗 = 1, 2, … , ℓ

output 𝑥
𝑗

𝑚𝑗.

Example:

Suppose 𝑚 = 010110.

So tag is (𝑥1
0, 𝑥2

1, 𝑥3
0, 𝑥4

1, 𝑥5
1, 𝑥6

0).

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1



RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

Ver:

On input 𝑚 ∈ 0,1 ℓ and tag (𝑡1, 𝑡2, … , 𝑡ℓ):

For each bit position 𝑗 = 1, 2, … , ℓ:

If 𝑅 𝑡𝑗 ≠ 𝑦
𝑗

𝑚𝑗 output reject;

output accept.

Example: Suppose 𝑚 = 010110.

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

𝑡1

𝑥1
1

𝑥2
0

𝑡2

𝑡3

𝑥3
1

𝑥4
0

𝑡4

𝑥5
0

𝑡5

𝑡6

𝑥6
1

𝑦1
0

𝑥1
1

𝑥2
0

𝑦2
1

𝑦3
0

𝑥3
1

𝑥4
0

𝑦4
1

𝑥5
0

𝑦5
1

𝑦6
0

𝑥6
1

𝑹 ?

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

𝑦1
0

𝑥1
1

𝑥2
0

𝑦2
1

𝑦3
0

𝑥3
1

𝑥4
0

𝑦4
1

𝑥5
0

𝑦5
1

𝑦6
0

𝑥6
1

𝑹

Honestly generated



RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

Check correctness:

• for message 𝑚 ∈ 0,1 ℓ…

• … tag is 𝑥1
𝑚1 , 𝑥2

𝑚2 , 𝑥3
𝑚3 , … , 𝑥ℓ

𝑚ℓ ;

• at the verification stage, we do this check for each 𝑗:

𝑹 𝑥
𝑗

𝑚𝑗 = 𝑦
𝑗

𝑚𝑗

• but in KeyGen this is exactly how we defined 𝑦𝑗
𝑏 for 𝑏 ∈ {0,1}.

• so verification succeeds.

So scheme is correct. Is it unforgeable?

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏



RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

So scheme is correct. Is it unforgeable?

Let’s look at the adversary’s view. It has two things:

Now adversary tries to forge on 𝑚∗ ≠ 𝑚.

There’s a bit 𝑗 where 𝑚∗ differs from 𝑚. Say 𝑗 = 2. Then…

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

𝑚 = 𝑚0𝑚1𝑚2…𝑚ℓ

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

𝑡 =

𝑚∗ = 𝑚0𝑚1
∗𝑚2…𝑚ℓ

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

𝑡∗ =

But 𝒙𝟐
𝟎 is random 

and unknown.



RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

So Lamport is a one-time MAC. So what?

Look at verification again:

It only requires knowledge of the 𝑦𝑗
𝑏!

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

Ver:
On input 𝑚 ∈ 0,1 ℓ and tag (𝑡1, 𝑡2, … , 𝑡ℓ):
For each bit position 𝑗 = 1, 2, … , ℓ:

If 𝑅 𝑡𝑗 ≠ 𝑦
𝑗

𝑚𝑗 output reject;

output accept.



RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

So Lamport is a one-time MAC. So what?

Look at verification again:

It only requires knowledge of the 𝑦𝑗
𝑏!

So can split key into a Mac key, and a Ver key.

Mac Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

Ver:
On input 𝑚 ∈ 0,1 ℓ and tag (𝑡1, 𝑡2, … , 𝑡_ℓ):
For each bit position 𝑗 = 1, 2, … , ℓ:

If 𝑅 𝑡𝑗 ≠ 𝑦
𝑗

𝑚𝑗 output reject;

output accept.

Ver Key

for tag
generation

for tag
verification



RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

So Lamport is a one-time MAC…

With a separate Mac key, and a Ver key.

So what?

Security only rested on unknowability of the 𝑥𝑗
𝑏.

So only the Mac Key needs to be kept secret!

In other words, we can make Ver Key public!

(Mac Key stays secure because 𝑹 is one-way.)

Mac Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

Ver Key

for tag
generation

for tag
verification



DIGITAL SIGNATURES

Old setting: one key, shared privately.

New setting: private signing key, public verification key.

Alice Bob
𝑘 𝑘(𝑚, 𝑡)

Alice
𝑠𝑘

𝑣𝑘
(𝑚, 𝑡) • only Alice can sign

• anyone can verify

PUBLIC-KEY
CRYPTOGRAPHY!



LAMPORT SIGNATURE SCHEME

New setting: private signing key, public verification key.

Alice

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝑹

PUBLIC



LAMPORT SIGNATURE SCHEME

New setting: private signing key, public verification key.

Alice

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝑹

PUBLIC

by one-way property of 𝑹



LAMPORT SIGNATURE SCHEME

New setting: private signing key, public verification key.

Alice

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝑹

PUBLIC

0 1 0 … 1 ∈ 0,1 ℓ𝑚 =

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1



LAMPORT SIGNATURE SCHEME

New setting: private signing key, public verification key.

Alice

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝑹

PUBLIC

0 1 0 … 1 ∈ 0,1 ℓ𝑚 =

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1



digital signature of document 𝑚

LAMPORT SIGNATURE SCHEME

New setting: private signing key, public verification key.

Alice

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝑹

PUBLIC

0 1 0 … 1 ∈ 0,1 ℓ𝑚 =

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝑹verification: check that



LAMPORT SIGNATURE SCHEME

Is it unforgeable?

Let’s look at the adversary’s view. It has three things:

Now adversary tries to forge on 𝑚∗ ≠ 𝑚.

There’s a bit 𝑗 where 𝑚∗ differs from 𝑚. Say 𝑗 = 2. Then…

𝑚 = 𝑚0𝑚1𝑚2…𝑚ℓ

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

𝑡 =

𝑚∗ = 𝑚0𝑚1
∗𝑚2…𝑚ℓ

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

𝑡∗ =

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

an inversion occurred here!

To do a formal proof:
• build an algorithm for inverting 𝑹…
• … which internally simulates 1-EUF-CMA
• … with the Lamport scheme.
The inversion will be at any bit where the
query and the forgery differ.



DIGITAL SIGNATURES

Compare to MACs:

Definition. A digital signature scheme is a triple of PPT algorithms:

• (key generation) 𝐊𝐞𝐲𝐆𝐞𝐧: on input 1𝑛, outputs a secret key 𝑠𝑘 and a public key 𝑣𝑘;
• (tag generation) 𝐒𝐢𝐠𝐧: on input a secret key 𝑠𝑘 and message 𝑚 ∈ 0,1 ∗, outputs signature 𝐒𝐢𝐠𝐧𝑠𝑘(𝑚);
• (verification) 𝐕𝐞𝐫: on input a public key 𝑣𝑘 and a message-signature pair (𝑚, 𝑠), outputs 𝟏 or 𝟎.

satisfying correctness: for all s𝑘, 𝑣𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧 and all 𝑚, 𝐕𝐞𝐫𝑣𝑘 𝑚, 𝐒𝐢𝐠𝐧𝑠𝑘(𝑚) = 𝟏.

Definition. A message authentication code (MAC) is a triple of PPT algorithms:

• (key generation) 𝐊𝐞𝐲𝐆𝐞𝐧: on input 1𝑛, outputs a key 𝑘 ∈ 0,1 𝑛;
• (tag generation) 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 0,1 ∗, outputs a tag 𝐌𝐚𝐜𝑘(𝑚);
• (verification) 𝐕𝐞𝐫: on input a key 𝑘 and a message-tag pair (𝑚, 𝑡), outputs 𝟏 or 𝟎;

satisfying correctness: for all 𝑘 and all 𝑚, 𝐕𝐞𝐫𝑘 𝑚,𝐌𝐚𝐜𝑘 𝑚 = 1.



PUBLIC-KEY
CRYPTOGRAPHY

(a teaser)



SO FAR…

Until we saw Lamport…

• all schemes used shared secret keys;

• this comes with a problem: how do you share the secret safely?

• you can’t use crypto…

• … so you’re left with some physical method

• … and if that’s intercepted (or searched without you knowing), all your crypto is pointless.

Alice
𝑘

Bob
𝑘

Eve



SO FAR…

There’s other problems with secret keys…

Like symmetry!

Consider authentication:

• with a MAC, generating tags and verifying tags are coupled together;

• if Alice shares a key with Bob…

• … she doesn’t just grant Bob the ability to verify the authenticity of her messages;

• … she also grants him the ability to authenticate them with her key!

So, to a third party, Bob could pretend to be Alice!

How do we solve that problem?

(By the way, this is also why secret-key crypto is sometimes called symmetric-key crypto.)

Alice
𝑘

Bob
𝑘

Eve



COMMUNICATION OVER PUBLIC CHANNELS?
Alice

Bob

Maybe the problem is just unavoidable?

At first…

• it might seem like this is just how things are…

• after all, if you and another party don’t share a secret…

• … how can you possibly communicate securely?

Lamport is certainly interesting, but it’s one time, and only a signature scheme.

• what about encryption?

• and what about the key sharing problem?

• are these problems even solvable?



COMMUNICATION OVER PUBLIC CHANNELS?

If you think this sounds impossible…

… you’re in good company!

In 1974, an undergrad named Ralph Merkle took a security course at UC Berkeley.

For the course project, he proposed the following:

(you could be a professor at Berkeley!)



COMMUNICATION OVER PUBLIC CHANNELS?

If you think this sounds impossible…

… you’re in good company! 

In 1974, an undergrad named Ralph Merkle took a security course at UC Berkeley.

• for the course project, he proposed this exact problem;

• the prof told him to pick a different project…

• … so Merkle dropped the course, but continued working on his idea.

He eventually came up with something called “Merkle puzzles.”

• it allowed two honest parties to share a secret over public channels in 𝑛 timesteps…

• but any adversary who wanted to find the secret had to spend 𝑛2 timesteps.

He wrote a paper, but it was rejected. The expert review said: “Experience shows that it is extremely 
dangerous to transmit key information in the clear.”

(you could be a professor at Berkeley!)



COMMUNICATION OVER PUBLIC CHANNELS?

A few years earlier...

In 1969, cryptographers in GCHQ (British NSA) discovered a protocol for public-key crypto!

(This was not known to the public until 1997.)

In the public world...

• two years after Merkle’s discovery…

• in 1976, Whitfield Diffie and Martin Hellman discovered a key-exchange protocol.

• What does Diffie-Hellman key exchange do? Something magical!



Alice Bob

KEY EXCHANGE

Diffie-Hellman key-exchange.

What does Diffie-Hellman key exchange do? Something magical!

• two parties are separated by an insecure channel (just like in encryption);

• but they do not share any secret information!

• and yet, after sending a few (insecure) messages in the open…

• they suddenly share a secret key!

• WHAT?

Alice

𝒌

Bob

𝒌



KEY EXCHANGE → SECRET-KEY CRYPTO

What then?

• after key exchange is performed…

• … we are now in the setting we assumed for:

1. secret-key encryption

2. message authentication

So: we can then use all the tools we learned about so far!

Alice

𝒌

Bob

𝒌



ASYMMETRIC CRYPTO

Is there another way?

Recall how Lamport worked.

• no key exchange required;

• one private key, one public key;

• asymmetric roles: private key enables signing, public key enables verification.

This can be extended to digital signatures for any number of messages!

What about encryption?

• can there be an asymmetric encryption scheme too?

• what’s the right asymmetry?

• public key encrypts; private key decrypts.

Alice
𝑠𝑘

𝑣𝑘
(𝑚, 𝑡)



ASYMMETRIC CRYPTO

Public-key encryption

Alice
𝑑𝑘 𝑒𝑘



ASYMMETRIC CRYPTO

Public-key encryption

Alice
𝑑𝑘

𝑒𝑘

Bob

𝑚

𝑒𝑘

𝑚



ASYMMETRIC CRYPTO

Public-key encryption

For two-way communication, Bob can do the same thing Alice did.

Alice
𝑑𝑘

𝑒𝑘

Bob

𝑚

𝑒𝑘

𝑚

𝑑𝑘

𝑚



PUBLIC-KEY CRYPTOGRAPHY

Clearly…

… public-key crypto is awesome!

How do we get there?

• we don’t know how to build it out of “generic things”…

• … like PRGs or PRFs.

• we need specific computational assumptions…

• … and these assumptions require some math.

Specifically, some number theory.

So some work will be involved, but it will be very worthwhile!



THE PLAN

Clearly…

… public-key crypto is awesome!

How do we get there?

• we don’t know how to build it out of “generic things”…

• … like PRGs or PRFs.

• we need specific computational assumptions…

• … and these assumptions require some math.

Specifically, some elementary number theory!

So some work will be involved, but it will be very worthwhile!



THE PLAN

Next 6 weeks:

Topic Dates

Intro and symmetric-key cryptography (8 lectures) January 28 – February 20

RSA and Diffie-Hellman (4 lectures + 1 hwk) Carl Miller February 25 – March 5

Secret sharing (2 lectures + 1 hwk) Bill Gasarch March 10 - 12

Fun guest lecture March 24

Midterm review March 26

Midterm March 31

Fun guest lecture (blockchain, likely) April 2

I’m back. April 7 - end


