MATH/OMSC 456 :: UPDATED COLRSEINFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment
Textbook: /ntroduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (slides, reading posted here);
Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there, homework 2 due midnight Thursday.
Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

* Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);

 Justin Hontz (jhontz@terpmail.umd.edu) Tpm-2pm MW (AVW);

Additional help:

« Chen Bai (cbail@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL - inside JQl)

» Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL - inside JQl)

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

// Note: ALL varigbles are unsigned 32 bit and wrap modulo 232 when calculating
var int s[64], K[&4]
var int i

I/ s specifies the per-round shift amounts
s[8..15] := { 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 12, 17, 22 }
- s[16..31] : s, 9, 14, 28, 5, 9, 14, 28, 9, 14, 28, 9, 14, 20 }

S q
s[32..47] := { 4, 11, 16, 23, 4, 11, 16, 23, 11, 16, 23, 11, 16, 23 }
s[48..63] := { 6, 1@, 15, 21, 6, 10, 15, 21, 6, 18, 15, 21, 6, 1@, 15, 21 }

-

o

oo~
[SR
o

/{ Use binary integer part of the sines of integers (Radians) as constants:
for i from @ to 63 do

K[i] := floor(2* % abs(sin{i + 1)))

What are hash functions?

var int ad := @x67452321 fF A
var int ba @xefcdab8s // B
var int c@ @x98badcfe /7 C
var int dé := @x18325476 /D

// Pre-processing: adding a single 1 bit

append "1" bit to message
SHA3 -
abseorbing | squeezing

A hash function is just a function whish ~omemcmooon den o

H:{0,1}™ - {0,1} for £ < m.

Po
f
In practice: ‘ I

Pl n—-1 : a E_ :201 5]
I I I I I I I I I l W i l | l Ve I | he basic block permutation function consists of 12 + 2£ rounds of five steps:

i
6 (theta)

Compute the parity of each of the 5w (320, when 1 = 64) 5-bit columns, and exclusive-or that info two nearby columns in a regular pattern. To be precise, a[f][/][] < alf][j10k] € parity(a[0...41[j—1][K]) @ parity(a[0...4][+1][k-1])

. . . p (rho)
i th I S a | g O rlth m I S CO m p | ete |y p u b Bitwise rotate each of the 25 words by a different triangular number 0, 1, 3, 6, 10, 15, ... To be precise, a[0][0] is not rotated, and for all 0 < < 24, a[{][/1[}] — al{][/1[k—(t+1)(1+2)/2], where (;) = G zy(ll’)
z(pi)

Permute the 25 words in a fixed pattern. a[j][2i+3/] < al][]

« {is afixed (128) w =
I S a I Xe CO n Sta n t e . g I W g CB\‘I\,\\SE combine along rows, using x « x @ (—y & z). To be precise, a[i1[j1[k] < a[Z][/1] & (—ali][j+I1[k] & a[{[j+2][k]). This is the only non-linear operation in SHA-3

1(iota)
EXClusive-or a round constant into one word of the state. To be precise, in round 1, for 0 < m < £, a[0][0][2"1] is XORed with bit i + T of a degree-8 LFSR sequence. This breaks the symmetry that is preserved by the other steps

Fr= U XOr (B OF (noT Uj)
g = (7xi) mod 15
// Be wary of the below definitions of a,b,c,d

HOW do you deSig n them? jl: : F+ A+ K[i] + M[g] // M[g] must be a 32-bits block

D
= C
]
]

* a bitlike PRGs: part art, part science; g B B oo 01D

// Add this chunk's hash to result so far:
ad = ad + A

« analysis is difficult. SR

d2 :=dd + D
end for
var char digest[16] := a2 append b@ append c@ append de // (Output is in Little-endian)

// Leftrotate function dej
leftrotate (x, c)
return (x << ¢} binary or (x »» (32-c));

MDS5

1992

RECAP. HASHHRUNCTIONS

What are they good for?
They compress their input: #:{0,1}™ - {0,1}* for £ < m. o >

So obviously, some y € {0,1}¢ have a lot of preimages: at least 2™~?.

But, for a well-designed hash function:

* hseemsto be 1-to-1; — —

* typically hard to find two inputs x, x" with the same digest H (x);
* typically also hard: given a digest y, find an input x such that H(x) = y.

This is why they are used, e.g., in git:
* files are not compared directly;

* instead, a hash (digest) of each file is stored, and the hashes are compared,;

* this allows for all sorts of integrity checks without a massive computational overhead. = <>

They're also used, e.g., in blockchains (e.g., in Bitcoin) for similar reasons.

RECAP. HASHRUNCTIONS FORMALLY

We will think about keyed hash functions.

Definition. A hash function A is a polynomial-time computable function family

H:{0,1}¢ x {0,1}* = {0,1}*

equipped with a PPT algorithm KeyGen which, on input 1%, outputs a key s € {0,1}%.

We write H*®(x) = H (s, x).

1t?
How to use it? Why? In practice, anyone can look up

Typically: hash function spec
1' Sample S < KeyGen(ln)’ /
2. Make s public to everyone;

3. Now anyone can evaluate H® on any string x and get the hash digest HS(x).

RECAP. COLLISON-RESISTANCE

What security properties do we want?
There are many. An important one: collision-resistance.
 as we saw, every hash function is necessarily many-to-one;

* butin a good hash function, it should be hard to find inputs with the same digest.

If this sounds impossible:
Think about a random function R: {0,1}*" - {0,1}"
it's true that each y € {0,1}" has (roughly) 2™ preimages;

let X}, = {x € {0,1}*" : R(x) = y} be the set of preimages of y;

Note: X,, is a random subset of size 2™ in a set of size 2%™:

In other words: for any z, lzzr[z EX)] =27

So, there are indeed functions for which it's hard to find preimages and collisions.

(Actually, in a certain sense, most functions have this property.)

RECAP. COLLISON-RESISTANCE

How to define?

As usual: with a game! X X

Let [T = (KeyGen,H) be a hash function, and 4 an algorithm. H H
The game HashColl(I1, A) proceeds as follows:
1. Generate key: s « KeyGen,;

2. Areceives s and outputs x, x" € {0,1}";

We say A wins if HS(x) = H5(x") and x # x'.

Definition. A hash function Il = (KeyGen, %) is collision-resistant if, for every PPT adversary 4,

Pr[A wins HashColl(II, A)] < negl(n).

What is collision resistance good for?

Authentication!

In pictures: m m'

\ 4

v

m HS
{0,1}* {0,13}

Mac,, "’ H H

RECAP. HASH-and-MAC

Construction (Hash-and-MAC). Let

« I = (KeyGen, Mac) be a fixed-length message authentication code (MAC), and
« [l = (KeyGeny, H) be a hash function.

Define an arbitrary-length deterministic MAC II" = (KeyGen', Mac') as follows:

- (key generation) KeyGen': on input 1%, outputs k' « (KeyGen(1"), KeyGeny (1™)).
« (tag generation) Mac’: on key (k, s) and message m, outputs t = Macy (H*(m)).

Theorem. I T is an EUF-CMA fixed-length MAC, and Il is a collision-resistant hash function,
then the Hash-and-MAC construction I1" is an EUF-CMA arbitrary-length MAC.

Proof idea:

Mac,

V4

f ad f hen either/ " H :
adversary forges on message m* then either/or:

1. m*is mapped to same z as some queried m: collision!

2. m*isnot mapped to same as any other: forgery on II! mt——s IS N

Mac,,

RECAP. HASH-and-MAC

\4

Proof idea: If forgery on m* then either/or: m —— HS
1. m*is mapped to same z as some queried m: collision! m—
2. m”is not mapped to same as any other: forgery on II!

m*——— HS

Mac,,

\4

Recall EUF-CMA and MacForge experiment.

 let Q be the set of queries made by 4, and (m*, t*) its output;
* let E be the green event: 3m € Q such that H*(m) = H*(m");

Mac; o H*

Calculate:

Pr[A wins MacForge(I1')] =

= Pr[A4 wins MacForge(I1") A E] + Pr[A wins MacForge(IT") A E]
< Pr[E] + Pr[A wins MacForge(Il") A E].

We will show that both of these terms are negligible. How?

Mac,

(m*,t*)

v

Ver(k,s)

RECAP. HASH-and-MAC

Proof idea: If forgery on m* then either/or:
1. m*is mapped to same z as some queried m: collision!

2. m”is not mapped to same as any other: forgery on II!

Controlling probability of E:
* Eisthe green event: 3m € Q such that H(m) = H*(m");
« want to show: Pr[E] < negl(n).

* how? Well, suppose it's not, and consider this algorithm:

1. Receive hash key s as input. Sample Mac key k;
2. Run A with oracle Macy, o H®;
3. Outputm* and arandom m € Q.

m ——— K

\4

m*——— H°

Mac; o H*

\4

Mac, — ¢

Mac, — ¢

(m",t")

Check: the probability that this algorithm finds a collision in HS is at least Pr[E] /|Q]|.

v

Ver(k,s)

RECAP. HASH-and-MAC

Proof idea: If forgery on m* then either/or:
1. m*is mapped to same z as some queried m: collision!

2. m”is not mapped to same as any other: forgery on II!

What's left:

Control Pr[A wins MacForge(Il") A E].

* what is this quantity?

« probability that 4 wins the forgery game...
 ...and for all queried m, HS(m) #= HS(m").

Stated a bit differently:
 probability that A wins the forgery game...

 ...and for all inputs z to Macy, oracle, z # z* := H*(m").

m ——— K

\4

Mac,,

m*——— S

Mac; o H*

\4

Mac,

(m",t")

Point: in this case, we should be able to win a MacForge game against Il!

v

Ver(k,s)

RECAP. HASH-and-MAC

Proof idea: If forgery on m* then either/or: m ———

:7_[5

1. m*is mapped to same z as some queried m: collision!

2. m”is not mapped to same as any other: forgery on II!

\4

:7_[‘5

What's left:

Control Pr[A wins MacForge(I1') A E]. If it's large...

... then we should be able to win a MacForge game against I1!

Mac; o H*

Here's how:
1. Receive Macy, oracle. Sample hash key s;

2. When queried with m € {0,1}" ...

i. Hashit:z := H5(m);

ii. MAC it (using oracle): t := Macy(z); return t.
3. When 4 outputs m*, output H*(m").

Check: probability this wins MacForge versus I1 is exactly Pr[A wins MacForge(I1') A E].

\4

Mac, — ¢

Mac, — ¢

(m",t")

v

Ver(k,s)

RECAP. HASH-and-MAC

Proof idea: If forgery on m* then either/or: m —— HS
1. m*is mapped to same z as some queried m: collision! m—
2. m”is not mapped to same as any other: forgery on II!

m*——— HS

\4

Recall EUF-CMA and MacForge experiment.

 let Q be the set of queries made by 4, and (m*, t*) its output;
* let E be the green event: 3m € Q such that H*(m) = H*(m");

Mac; o H*

Calculate:

Pr[A wins MacForge(I1')] =

= Pr[A4 wins MacForge(I1") A E] + Pr[A wins MacForge(IT") A E]
< Pr[E] + Pr[A wins MacForge(I") A E]

< negl(n) + negl(n) < negl(n).

\4

Mac, — ¢

Mac, — ¢

(m*,t*)

v

Ver(k,s)

HASHRUNCTIONS continued

More on hash functions:

1. Keyed vs unkeyed;

2. Arbitrary-length inputs vs fixed-length inputs;

3. Hash functions as random oracles.

HASHRUNCTIONS FORMALLY

Keyed vs unkeyed hash functions.

| did something funny...

« | first cited some public hash functions (like MD5 and SHA3)...

* ... clearly, these hashes do not have a “key.” They are fixed algorithms!
* butthen | defined a hash function to have a key!

 and that key seems pretty critical!
This is pretty standard in cryptography. Why?

Why do we use keyed hash functions in formal reasoning?

HASHRUNCTIONS FORMALLY

Why keyed hash functions?

1. There actually do exist keyed hash functions, and they are interesting!
(maybe we will get to them later in the course.)

2. An annoying technicality:

* technically, an unkeyed hash is a completely fixed (and hence known) object.
* this means that, if we were to strictly follow our theoretical formalism...

« ... algorithms could have hard-coded properties of the hash: collisions, preimages, etc.

This is analogous to this juxtaposition:
Fix a boolean formula ¢ of size 10290, Is it NP-hard to determine if ¢ is satisfiable? NO.

s it NP-hard to determine, given an arbitrary formula i as input, if is satisfiable? YES.

In spirit: a keyed hash models the fact that, in reality,
... nobody really “"knows” anything about SHA3 except a few of its values!

HASHRUNCTIONS continued

More on hash functions:

1. Keyed vs unkeyed;

2. Arbitrary-length inputs vs fixed-length inputs;

3. Hash functions as random oracles.

absorbing | squeszing S HA3
= B F 2015

HASHRINCTIONS ARBTRARY-LBENGTHINPUTS ety

We've been assuming...

The basic block permutation function consists of 12 + 2¢ rounds of five steps:

6 (theta)
Compute the parity of each of the 51 (320, when = 64) 5-bit columns, and exclusive-or that into two nearby columns in a regular pattern. To be precise, a[][j1[K] < a[f1[/1[K] & parity(a[0.. 4][~11[K]) € parity(a[0.. 4] /+1][k-1])

... hash functions can take in arbitrary strings.

. 2\ /0
Bitwise rotate each of the 25 words by a different triangular number 0, 1, 3, 6, 10, 15, To be precise, a[0][0] is not rotated, and for all 0 < r < 24, a[f][j1[A] < alil[IA—(r+1)(++2)/2], where (l) = (3) (1)
J

Pretty important for Hash-and-MAC! e e A1 A

 (chi)
Bitwise combine along rows, using x — x € (- & z). To be precise, ali1[j][] — a[i][/1(k] @ (~alaL+I1[K] & ali][;~2][K]). This is the only non-linear operation in SHA-3.
1 (iota)
Exclusive-or a round constant into one word of the state. To be precise, in round 72, for 0 < m < £, a[0][0][2"~1] is XORed with bit 7 + 71 of a degree-8 LFSR sequence. This breaks the symmetry that is preserved by the other steps

* in practice, that doesn't come for free;
 we first construct a fixed-length hash, like this:

H:{0,1}*" - {0,1}"
* maybe for a fixed n (e.g.,n = 128)...

... and then apply a transformation that enables arbitrary-length inputs.

The simplest is the Merkle-Damgard transform.

HASHRINCTIONS ARBTRARY-LBENGTHINPUTS

Merkle-Damgard transform
What does it do?

* transforms one algorithm into another;

{0’1}71 —»\

{Oil}n —

H

—— {o,1}"

« input algorithm: computes a fixed-length compression function (e.g., H:{0,1}*" - {0,1}");

 output algorithm: computes an arbitrary-input-length hash function Hyp: {0,1}* - {0,1}";

How does it work?

Split up input: x = (x4, X5, ..., Xp) so each x; € {0,1}". Set xp,1 = |x|.

X1 X2

\ 4

X3

\ 4

\ 4

"\

"\

"\

0" ——

\4

\4

Xp+1

\ 4

"\

» Hymp(x)

CBC-MAC vs Merkle-Danngard

Compare: CBC-MAC

mq m

I

\ 4

0" — & =Fk D Fk

Compare: Merkle-Damgard transform

X1 X2 X3

NI

OTl BN >

Xp+1

A\ 4

» Hymp(x)

Xp+1

Hwmp (x)

Zp+1

Merkle-Dangard transform

Remember:

« critical property we needed for integrity checks...
* ...and for Hash-and-MAC...

e ... was collision-resistance!

What happens when we apply MD?

Theorem. If H is a collision-free hash function, then so is its Merkle-Damgard transform Hyp.

See book for proof. It's fairly straightforward.

HASHRUNCTIONS continued

More on hash functions:
1. Keyed vs unkeyed;

2. Arbitrary-length inputs vs fixed-length inputs;

3.Hash functions as random oracles.

RANDOM ORACLES

Recall:

We constructed stuff from the collision-resistant property.

But in practice, for good hash functions:
* nobody knows what to do except evaluate;
« and, when they evaluate...

* ...they can't distinguish output from random!

 (can you come up with a “security game” for this task?)

This is much stronger than just collision-resistance!

absorbing | squeezing S HA3
I 2015

The basic block permutation function consists of 12 + 2 rounds of five steps:

6 (theta)
Compute the parity of each of the 51 (320, when = 64) 5-bit columns, and exclusive-or that into two nearby columns in a regular pattern. To be precise, a[][j1[K] < a[f1[/1[K] & parity(a[0.. 4][~11[K]) € parity(a[0.. 4] /+1][k-1])

P (rho)
. Nt/
Bitwise rotate each of the 25 words by a different triangular number 0, 1, 3, 6, 10, 15, To be precise, a[0][0] is not rotated, and for all 0 < r < 24, a[f][j1[A] < alil[IA—(r+1)(++2)/2], where (l) = (? IJ) (1)
J
7 (pi)
Permute the 25 words in a fixed pattem. a[f][2i+3/] < al][]
 (chi)
Bitwise combine along rows, using x — x & (' & z). To be precise, ali][/][] — alflj]K] @ (~alL/+11K] & alA[;+2][k]). This is the only non-inear operation in SHA-3
1(iota)

Exclusive-or a round constant into one word of the state. To be precise, in round , for 0 = m < €, a[0][0][2™~1] is XORed with bit 72 + 75 of a degree-8 LFSR sequence. This breaks the symmetry that is preserved by the other steps

RANDOM ORACLES

So really...
It seems like hash functions behave like random oracles!
It's as if someone sampled a uniformly random function R...

...and then putitin an oracle!

1. Define R:{0,1}" - {0,1}"
by setting R(x) « {0,1}" for each x.

2. Put R "into a box" so everyone

A strong hash function (like SHA-3) can query it, but only as an oracle.

is developed and standardized.

x— R [— R(x)

RANDOM ORACLES

Some caveats:

* thisis just a general impression;

« for example:

1. Ahash function is a fixed, deterministic object;

2. Arandom oracle is drawn from a distribution of functions.

So we should be careful! 1. Define R:{0,1}" - {0,1}"
by setting R(x) « {0,1}" for each x.

But what can we do in such a model? 2. Put R "into a boxlf SO everyone
can query it, but only as an oracle.

It's called “The Random Oracle Model” (ROM.)

Let's assume that it's real. What does it get us? X

R(x)

RANDOM ORACLES

Random Oracle Model (ROM). nbits | 1. Define R:{0,1}" - {0,1}"
A useful observation: —t— by setting R(x) « {0,1}" for each x.

Suppose it is OUR job to sample R. How could we do it? _ 2. Put R "into a box” so everyone
can query it, but only as an oracle.

|. generate a huge lookup table with 2™ entries;

put a random string from {0,1}" in each entry.

R(x)

2™ entries - X

. be lazy about it!

wait until someone asks a question x...

generate a random value y and output it as R(x) = y.

... and store the pair (x,y) in a lookup table T.

for future questions x": (i.) check if 3(x’,y") in T.

(ii.) if yes, return y'; if no, generate fresh y' and add (x',y") to T.

RANDOM ORACLES

Random Oracle Model (ROM).

Lazy sampling:

n bits

wait until someone asks a question x...

generate a random value y and output it as R(x) = y.

... and store the pair (x,y) in a lookup table T.
for future questions x": (i.) check if 3(x’,y") inT.
(ii.) if yes, return y'; if no, generate fresh y" and add (x',y") to T.
Important takeaways: 2* entries

1. In any ROM situation:
« if nobody has asked a question x yet...
 ...then R(x) is still uniformly random (and independent of everything!)

2. We can simulate the random oracle in reductions!

RANDOMORACLES = callision-registant hashing

Random Oracle Model (ROM). 1. Define R: {0,1)" = {0,1}"
What crypto can we build in this model? by setting R(x) « {0,1}" for each x.

2. Put R "into a box” so everyone
Collision-resistant hash: can query it, but only as an oracle.

e recall: random functions are collision-resistant;

* (because preimages are uniformly distributed)

e so R itself serves as a collision-resistant hash:

R(x)

« if we want small outputs, can discard bits of output.

Note:
* this is now statistical collision-resistance;
 for normal hash functions, it was computational (i.e., against PPT adversaries.)

* remember: collision-resistant = one-way. So we also get one-way functions!

RANDOM ORAOLES = PRFs i wndl

Random Oracle Model (ROM). 1. Define R: {0,1)" = {0,1}"
What crypto can we build in this model? by setting R(x) « {0,1}" for each x.
2. Put R "into a box” so everyone

Pseudorandom functions: (0---00,k) RN can query it, but only as an oracle.
« sample a key: k « {0,1}"/?;
« define

F;:{0,1}"/% - {0,1}"/2

x:{0,1} {0,1} 0--0LK) S X R R(x)

F,.(x) = R(x, k)
Why is it pseudorandom? Note: 4 knows R! _
1. take any algorithm AFx _ It makes some query xy;
2. Prlx; = (z,k)] = 272 for any z; so response is uniformly random in {0,1}"V/%; | so Fy is oracle indistinguishable
3. in particular, Afx learned nothing with the first query. from a random function!
4. so we can repeat the argument starting from 1.

RANDOM ORACLES = lots of stuff

Random Oracle Model (ROM).
What crypto can we build in this model?

PR\ collision-resistant hash

IND-CPA unforgeable MAC

encryption (fixed-length) \
v

unforgeable MAC
(arbitrary-length)

PRG €

\ |7

RANDOM ORACLES = one-time authentication
~~_ IMPORTANT! pe——

Lamport scheme. One-time MAC for messages of length <. . NEW IDEAS! ;
Let R: {0,1}" — {0,1}" be a random oracle. —
4
KeyGen:
d . , 0 | x{ | x3| x9 X}
I. Sample 2¢ random inputs to R:
o x¥ x9, x9, .., x5, 1 | xi|xd|xd X}
- xi, xi, xi, .., xp.
Note each x}’ e {0,1}™.
Il. Now compute, for each j, b: R
b ._ bYy.
Ill. Output key consisting of two parts: T ol o »
1. x0, x9, x3,..,x) and x1, x%, x}, .., x;; 01 y1|Yz|Vs Ve
2. yi, ¥3, ¥8, .. yi and yi, y3, ¥3, .., Vi; 1\ vi|yz|vs| -~ |

RANDOMORACLES = ane-time authentication

Lamport scheme. One-time MAC for messages of length 4. Key
Let R: {0,1}" — {0,1}" be a random oracle.
0 [x| x2|x? x)
Mac: 1 | x| x|l x}
On input a message m € {0,1}*:
Output tag t € {0,1}" like this:
For each bit positionj =1,2,...,¢
output X; "
Example:
Suppose m = 010110.
1| v3| vs Ve
yi|vi|yi Ve

- 0.,1.,0 1.1 .0
So tagis (x{,x5,X3,Xz,X5,Xg)-

RANDOMORACLES = ane-time authentication

Lamport scheme. One-time MAC for messages of length <. Key
Let R:{0,1}" — {0,1}" be a random oracle.
0 [x| x2|x? x)
Ver: 1 | xi|xd|xd X}
On input m € {0,1} and tag (ty, ty, ..., ts):
For each bit positionj =1,2, ..., ¢:
m; °
If (R(tj) * Y,]) output reject; R
output accept.
Example: Suppose m = 010110. Honestly generated
1| vs | ¥3 Ve
yi|v2|ys Vi

RANDOMORACLES = ane-time authentication

Lamport scheme. One-time MAC for messages of length 4.

Let R: {0,1}" — {0,1}" be a random oracle.

Check correctness:
« for messagem € {0,1}* ...
« ...tagis (xinl,xgnz,x;n{ ...,x;n");

« atthe verification stage, we do this check for each j:

R (x}nj) = yjmj

* butin KeyGen this is exactly how we defined y}’ for b € {0,1}.

e so verification succeeds.

So scheme is correct. Is it unforgeable?

Key

X1 | X2 | X3 Xp
xi | x3 | x3 Xg
0 0 0 0
Yi| Y21 Y3 Ve
1 1 1 1
Yi|Y2|Y3 Yo

RANDOMORACLES = ane-time authentication

Lamport scheme. One-time MAC for messages of length 4.

Let R: {0,1}" — {0,1}" be a random oracle.

So scheme is correct. Is it unforgeable?

Let's look at the adversary’s view. It has two things:
m=momim,..Mmy

Now adversary tries to forge on m* # m.

There's a bit j where m* differs from m. Say j = 2. Then...
m" = memir-__ -

But x) is random

and unknown.

X3 | X3

Key

