
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (slides, reading posted here);

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there, homework 2 due midnight Thursday.

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL – inside JQI)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL – inside JQI)

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

RECAP: HASH FUNCTIONS

What are hash functions?

A hash function is just a function which compresses its input:

ℋ: 0,1 𝑚 → 0,1 ℓ for ℓ < 𝑚.

In practice:

• ℋ is implementable with a very fast algorithm;

• this algorithm is completely public;

• ℓ is a fixed constant (e.g., 128) while 𝑚 might be arbitrary;

How do you design them?

• a bit like PRGs: part art, part science;

• analysis is difficult.

MD5
1992

SHA3
2015

RECAP: HASH FUNCTIONS

What are they good for?

They compress their input: ℋ: 0,1 𝑚 → 0,1 ℓ for ℓ < 𝑚.

So obviously, some 𝑦 ∈ 0,1 ℓ have a lot of preimages: at least 2𝑚−ℓ.

But, for a well-designed hash function:

• ℎ seems to be 1-to-1;

• typically hard to find two inputs 𝑥, 𝑥′ with the same digest ℋ(𝑥);

• typically also hard: given a digest 𝑦, find an input 𝑥 such that ℋ 𝑥 = 𝑦.

This is why they are used, e.g., in git:

• files are not compared directly;

• instead, a hash (digest) of each file is stored, and the hashes are compared;

• this allows for all sorts of integrity checks without a massive computational overhead.

They’re also used, e.g., in blockchains (e.g., in Bitcoin) for similar reasons.

𝑥 𝑥′

𝑦

ℋℋ

ℋ ℋ

RECAP: HASH FUNCTIONS, FORMALLY

We will think about keyed hash functions.

We write ℋ𝑠 𝑥 ≔ ℋ(𝑠, 𝑥).

How to use it?

Typically:

1. Sample 𝑠 ← 𝐊𝐞𝐲𝐆𝐞𝐧(1𝑛);

2. Make 𝑠 public to everyone;

3. Now anyone can evaluate ℋ𝑠 on any string 𝑥 and get the hash digest ℋ𝑠 𝑥 .

Definition. A hash function ℋ is a polynomial-time computable function family

ℋ: 0,1 𝑑 × 0,1 ∗ → 0,1 ℓ

equipped with a PPT algorithm 𝐊𝐞𝐲𝐆𝐞𝐧 which, on input 1𝑛, outputs a key 𝑠 ∈ 0,1 𝑑.

Why? In practice, anyone can look up
hash function spec

RECAP: COLLISION-RESISTANCE

What security properties do we want?

There are many. An important one: collision-resistance.

• as we saw, every hash function is necessarily many-to-one;

• but in a good hash function, it should be hard to find inputs with the same digest.

If this sounds impossible:

Think about a random function 𝑹: 0,1 2𝑛 → 0,1 𝑛

• it’s true that each 𝑦 ∈ 0,1 𝑛 has (roughly) 2𝑛 preimages;

• let 𝑋𝑦 = 𝑥 ∈ 0,1 2𝑛 ∶ 𝑹 𝑥 = 𝑦 be the set of preimages of 𝑦;

• Note: 𝑋𝑦 is a random subset of size 2𝑛 in a set of size 22𝑛;

• In other words: for any 𝑧, Pr
𝑹
[𝑧 ∈ 𝑋𝑦] ≈ 2−𝑛.

So, there are indeed functions for which it’s hard to find preimages and collisions.

(Actually, in a certain sense, most functions have this property.)

𝑥 𝑥′

𝑦

ℋℋ

RECAP: COLLISION-RESISTANCE

How to define?

As usual: with a game!

Let Π = 𝐊𝐞𝐲𝐆𝐞𝐧,ℋ be a hash function, and 𝑨 an algorithm.

The game HashColl Π, 𝑨 proceeds as follows:

1. Generate key: 𝑠 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

2. 𝑨 receives 𝑠 and outputs 𝑥, 𝑥′ ∈ 0,1 ∗;

We say 𝑨 wins if ℋ𝑠 𝑥 = ℋ𝑠(𝑥′) and 𝑥 ≠ 𝑥′.

𝑥 𝑥′

𝑦

ℋℋ

Definition. A hash function Π = 𝐊𝐞𝐲𝐆𝐞𝐧,ℋ is collision-resistant if, for every PPT adversary 𝑨,

Pr 𝑨 wins HashColl Π, 𝑨 ≤ negl 𝑛 .

RECAP: HASH-and-MAC

What is collision resistance good for?

Authentication!

In pictures: 𝑚 𝑚′

𝑦

ℋℋ

Construction (Hash-and-MAC). Let

• Π = (𝐊𝐞𝐲𝐆𝐞𝐧,𝐌𝐚𝐜) be a fixed-length message authentication code (MAC), and
• ΠH = 𝐊𝐞𝐲𝐆𝐞𝐧H,ℋ be a hash function.

Define an arbitrary-length deterministic MAC Π′ = (𝐊𝐞𝐲𝐆𝐞𝐧′,𝐌𝐚𝐜′) as follows:

• (key generation) 𝐊𝐞𝐲𝐆𝐞𝐧′: on input 1𝑛, outputs 𝑘′ ← 𝐊𝐞𝐲𝐆𝐞𝐧 1n , 𝐊𝐞𝐲𝐆𝐞𝐧H 1𝑛 .

• (tag generation) 𝐌𝐚𝐜′: on key (𝑘, 𝑠) and message 𝑚, outputs 𝑡 ≔ 𝐌𝐚𝐜𝑘(ℋ
𝑠 𝑚).

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡
0,1 ∗ 0,1 ℓ

RECAP: HASH-and-MAC

Proof idea:

If adversary forges on message 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

Construction (Hash-and-MAC). Let

• Π = (𝐊𝐞𝐲𝐆𝐞𝐧,𝐌𝐚𝐜) be a fixed-length message authentication code (MAC), and
• ΠH = 𝐊𝐞𝐲𝐆𝐞𝐧H,ℋ be a hash function.

Define an arbitrary-length deterministic MAC Π′ = (𝐊𝐞𝐲𝐆𝐞𝐧′,𝐌𝐚𝐜′) as follows:

• (key generation) 𝐊𝐞𝐲𝐆𝐞𝐧′: on input 1𝑛, outputs 𝑘′ ← 𝐊𝐞𝐲𝐆𝐞𝐧 1n , 𝐊𝐞𝐲𝐆𝐞𝐧H 1𝑛 .

• (tag generation) 𝐌𝐚𝐜′: on key (𝑘, 𝑠) and message 𝑚, outputs 𝑡 ≔ 𝐌𝐚𝐜𝑘(ℋ
𝑠 𝑚).

Theorem. If Π is an EUF-CMA fixed-length MAC, and ΠH is a collision-resistant hash function,
then the Hash-and-MAC construction Π′ is an EUF-CMA arbitrary-length MAC.

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑚∗

𝑧

𝑚∗ ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡
𝑧∗

RECAP: HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

Recall EUF-CMA and MacForge experiment.

• let 𝑄 be the set of queries made by 𝑨, and (𝑚∗, 𝑡∗) its output;

• let 𝑬 be the green event: ∃𝑚 ∈ 𝑄 such that ℋ𝑠 𝑚 = ℋ𝑠(𝑚∗);

Calculate:

Pr[𝐴 wins MacForge Π′] =

= Pr 𝐴 wins MacForge Π′ ∧ 𝑬 + Pr 𝐴 wins MacForge Π′ ∧ ഥ𝑬

≤ Pr 𝑬 + Pr 𝐴 wins MacForge Π′ ∧ ഥ𝑬 .

We will show that both of these terms are negligible. How?

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑚∗

𝑚∗ ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑧

𝑧∗

𝑨

𝐌𝐚𝐜𝑘 ∘ ℋ
𝑠

(𝑚∗, 𝑡∗)
𝐕𝐞𝐫(𝑘,𝑠) 𝑏

RECAP: HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

Controlling probability of 𝑬:

• 𝑬 is the green event: ∃𝑚 ∈ 𝑄 such that ℋ𝑠 𝑚 = ℋ𝑠(𝑚∗);

• want to show: Pr 𝑬 ≤ negl 𝑛 .

• how? Well, suppose it’s not, and consider this algorithm:

1. Receive hash key 𝑠 as input. Sample 𝐌𝐚𝐜 key 𝑘;

2. Run 𝑨 with oracle 𝐌𝐚𝐜𝑘 ∘ ℋ
𝑠;

3. Output 𝑚∗ and a random 𝑚 ∈ 𝑄.

Check: the probability that this algorithm finds a collision in ℋ𝑠 is at least Pr 𝑬 / 𝑄 .

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑚∗

𝑚∗ ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑧

𝑧∗

𝑨

𝐌𝐚𝐜𝑘 ∘ ℋ
𝑠

(𝑚∗, 𝑡∗)
𝐕𝐞𝐫(𝑘,𝑠) 𝑏

RECAP: HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

What’s left:

Control Pr 𝑨 wins MacForge Π′ ∧ ഥ𝑬 .

• what is this quantity?

• probability that 𝑨 wins the forgery game…

• … and for all queried 𝑚, ℋ𝑠 𝑚 ≠ ℋ𝑠(𝑚∗).

Stated a bit differently:

• probability that 𝑨 wins the forgery game…

• … and for all inputs 𝑧 to 𝐌𝐚𝐜𝑘 oracle, 𝑧 ≠ 𝑧∗ ≔ ℋ𝑠(𝑚∗).

Point: in this case, we should be able to win a MacForge game against Π!

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑚∗

𝑚∗ ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑧

𝑧∗

𝑨

𝐌𝐚𝐜𝑘 ∘ ℋ
𝑠

(𝑚∗, 𝑡∗)
𝐕𝐞𝐫(𝑘,𝑠) 𝑏

RECAP: HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

What’s left:

Control Pr 𝑨 wins MacForge Π′ ∧ ഥ𝑬 . If it’s large…

… then we should be able to win a MacForge game against Π!

Here’s how:

1. Receive 𝐌𝐚𝐜𝑘 oracle. Sample hash key 𝑠;

2. When queried with 𝑚 ∈ 0,1 ∗…

i. Hash it: 𝑧 ≔ ℋ𝑠(m);

ii. MAC it (using oracle): 𝑡 ≔ 𝐌𝐚𝐜𝑘 z ; return 𝑡.

3. When 𝑨 outputs 𝑚∗, output ℋ𝑠 𝑚∗ .

Check: probability this wins MacForge versus Π is exactly Pr 𝑨 wins MacForge Π′ ∧ ഥ𝑬 .

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑚∗

𝑚∗ ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑧

𝑧∗

𝑨

𝐌𝐚𝐜𝑘 ∘ ℋ
𝑠

(𝑚∗, 𝑡∗)
𝐕𝐞𝐫(𝑘,𝑠) 𝑏

RECAP: HASH-and-MAC

Proof idea: If forgery on 𝑚∗ then either/or:

1. 𝑚∗ is mapped to same 𝑧 as some queried 𝑚: collision!

2. 𝑚∗ is not mapped to same as any other: forgery on Π!

Recall EUF-CMA and MacForge experiment.

• let 𝑄 be the set of queries made by 𝑨, and (𝑚∗, 𝑡∗) its output;

• let 𝑬 be the green event: ∃𝑚 ∈ 𝑄 such that ℋ𝑠 𝑚 = ℋ𝑠(𝑚∗);

Calculate:

Pr[𝐴 wins MacForge Π′] =

= Pr 𝐴 wins MacForge Π′ ∧ 𝑬 + Pr 𝐴 wins MacForge Π′ ∧ ഥ𝑬

≤ Pr 𝑬 + Pr 𝐴 wins MacForge Π′ ∧ ഥ𝑬

≤ negl 𝑛 + negl 𝑛 ≤ negl 𝑛 .

𝑚 ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑚∗

𝑚∗ ℋ𝑠 𝐌𝐚𝐜𝑘 𝑡

𝑧

𝑧∗

𝑨

𝐌𝐚𝐜𝑘 ∘ ℋ
𝑠

(𝑚∗, 𝑡∗)
𝐕𝐞𝐫(𝑘,𝑠) 𝑏

HASH FUNCTIONS
continued

Reading: (p.156-160, 174-181)

HASH FUNCTIONS continued

More on hash functions:

1. Keyed vs unkeyed;

2. Arbitrary-length inputs vs fixed-length inputs;

3. Hash functions as random oracles.

HASH FUNCTIONS, FORMALLY

Keyed vs unkeyed hash functions.

I did something funny…

• I first cited some public hash functions (like MD5 and SHA3)…

• … clearly, these hashes do not have a “key.” They are fixed algorithms!

• but then I defined a hash function to have a key!

• and that key seems pretty critical!

This is pretty standard in cryptography. Why?

Why do we use keyed hash functions in formal reasoning?

HASH FUNCTIONS, FORMALLY

Why keyed hash functions?

1. There actually do exist keyed hash functions, and they are interesting!

(maybe we will get to them later in the course.)

2. An annoying technicality:

• technically, an unkeyed hash is a completely fixed (and hence known) object.

• this means that, if we were to strictly follow our theoretical formalism…

• … algorithms could have hard-coded properties of the hash: collisions, preimages, etc.

This is analogous to this juxtaposition:

Fix a boolean formula 𝜑 of size 10200. Is it NP-hard to determine if 𝜑 is satisfiable? NO.

Is it NP-hard to determine, given an arbitrary formula 𝜓 as input, if 𝜓 is satisfiable? YES.

In spirit: a keyed hash models the fact that, in reality,

… nobody really “knows” anything about SHA3 except a few of its values!

HASH FUNCTIONS continued

More on hash functions:

1. Keyed vs unkeyed;

2. Arbitrary-length inputs vs fixed-length inputs;

3. Hash functions as random oracles.

HASH FUNCTIONS: ARBITRARY-LENGTH INPUTS

We’ve been assuming…

… hash functions can take in arbitrary strings.

Pretty important for Hash-and-MAC!

• in practice, that doesn’t come for free;

• we first construct a fixed-length hash, like this:

ℋ: 0,1 2𝑛 → 0,1 𝑛

• maybe for a fixed 𝑛 (e.g., 𝑛 = 128)…

• … and then apply a transformation that enables arbitrary-length inputs.

The simplest is the Merkle-Damgård transform.

SHA3
2015

HASH FUNCTIONS: ARBITRARY-LENGTH INPUTS

Merkle-Damgård transform

What does it do?

• transforms one algorithm into another;

• input algorithm: computes a fixed-length compression function (e.g., ℋ: 0,1 2𝑛 → 0,1 𝑛);

• output algorithm: computes an arbitrary-input-length hash function ℋMD: 0,1
∗ → 0,1 𝑛;

How does it work?

Split up input: 𝑥 = (𝑥1, 𝑥2, … , 𝑥ℓ) so each 𝑥𝑖 ∈ 0,1 𝑛. Set 𝑥ℓ+1 ≔ |𝑥|.

𝓗

0,1 𝑛

0,1 𝑛 0,1 𝑛

𝓗

𝑥1

0𝑛
𝓗

𝑥2

𝓗

𝑥3

… 𝓗

𝑥ℓ+1

ℋMD 𝑥

CBC-MAC vs Merkle-Damgård

Compare: CBC-MAC

Compare: Merkle-Damgård transform

𝓗

𝑥1

0𝑛
𝓗

𝑥2

𝓗

𝑥3

… 𝓗

𝑥ℓ+1

ℋMD 𝑥

𝑭𝑘 𝑭𝑘⊕

𝑚2

𝑭𝑘⊕

𝑚3

. . . 𝑭𝑘⊕

𝑚ℓ

𝑡ℓ0𝑛 ⊕

𝑚1

Merkle-Damgård transform

.

𝓗

𝑥1

0𝑛
𝓗

𝑥2

𝓗

𝑥3

… 𝓗

𝑥ℓ+1

ℋMD 𝑥

Construction (Merkle-Damgård).
Let 𝐊𝐞𝐲𝐆𝐞𝐧H,ℋ be a hash function, and suppose ℋ: 0,1 2𝑛 → 0,1 𝑛. Define a new hash function:

• 𝐊𝐞𝐲𝐆𝐞𝐧HMD
: same as 𝐊𝐞𝐲𝐆𝐞𝐧H;

• ℋMD: 0,1
∗ → 0,1 𝑛 defined as follows, on input 𝑥:

1. assume length |𝑥| of 𝑥 is divisible by 𝑛 (otherwise pad with 0s);
2. split 𝑥 as 𝑥 = (𝑥1, 𝑥2, … , 𝑥ℓ) and set 𝑥ℓ+1 ≔ |𝑥|.
3. set 𝑧0 = 0𝑛; compute 𝑧𝑖 = ℋ(𝑥𝑖 , 𝑧𝑖−1);
4. output 𝑧ℓ+1 .

𝑧0 𝑧1 𝑧2 𝑧ℓ 𝑧ℓ+1

Merkle-Damgård transform

Remember:

• critical property we needed for integrity checks…

• … and for Hash-and-MAC…

• … was collision-resistance!

What happens when we apply MD?

See book for proof. It’s fairly straightforward.

Theorem. If ℋ is a collision-free hash function, then so is its Merkle-Damgård transform ℋMD.

HASH FUNCTIONS continued

More on hash functions:

1. Keyed vs unkeyed;

2. Arbitrary-length inputs vs fixed-length inputs;

3. Hash functions as random oracles.

RANDOM ORACLES

Recall:

We constructed stuff from the collision-resistant property.

But in practice, for good hash functions:

• nobody knows what to do except evaluate;

• and, when they evaluate…

• … they can’t distinguish output from random!

• (can you come up with a “security game” for this task?)

This is much stronger than just collision-resistance!

SHA3
2015

ℋ𝑥 ℋ(𝑥)

RANDOM ORACLES

So really…

It seems like hash functions behave like random oracles!

It’s as if someone sampled a uniformly random function 𝑹…

… and then put it in an oracle!

1. Define 𝑹: 0,1 n → 0,1 𝑛

by setting 𝑹 𝑥 ← 0,1 𝑛 for each 𝑥.

2. Put 𝑹 “into a box” so everyone
can query it, but only as an oracle.

𝑹𝑥 𝑹(𝑥)

A strong hash function (like SHA-3)
is developed and standardized.

LOOKS LIKE

RANDOM ORACLES

Some caveats:

• this is just a general impression;

• for example:

1. A hash function is a fixed, deterministic object;

2. A random oracle is drawn from a distribution of functions.

So we should be careful!

But what can we do in such a model?

It’s called “The Random Oracle Model” (ROM.)

Let’s assume that it’s real. What does it get us?

1. Define 𝑹: 0,1 n → 0,1 𝑛

by setting 𝑹 𝑥 ← 0,1 𝑛 for each 𝑥.

2. Put 𝑹 “into a box” so everyone
can query it, but only as an oracle.

𝑹𝑥 𝑹(𝑥)

RANDOM ORACLES

Random Oracle Model (ROM).

A useful observation:

Suppose it is OUR job to sample 𝑹. How could we do it?

I. generate a huge lookup table with 2𝑛 entries;

put a random string from 0,1 𝑛 in each entry.

II. be lazy about it!

wait until someone asks a question 𝑥…

generate a random value 𝑦 and output it as 𝑹 𝑥 ≔ 𝑦.

… and store the pair (𝑥, 𝑦) in a lookup table 𝑻.

for future questions 𝑥′: (i.) check if ∃(𝑥′, 𝑦′) in 𝑻.

(ii.) if yes, return 𝑦′; if no, generate fresh 𝑦′ and add (𝑥′, 𝑦′) to 𝑻.

1. Define 𝑹: 0,1 n → 0,1 𝑛

by setting 𝑹 𝑥 ← 0,1 𝑛 for each 𝑥.

2. Put 𝑹 “into a box” so everyone
can query it, but only as an oracle.

𝑹𝑥 𝑹(𝑥)

𝑹

𝑛 bits

2𝑛 entries

RANDOM ORACLES

Random Oracle Model (ROM).

Lazy sampling:

wait until someone asks a question 𝑥…

generate a random value 𝑦 and output it as 𝑹 𝑥 ≔ 𝑦.

… and store the pair (𝑥, 𝑦) in a lookup table 𝑇.

for future questions 𝑥′: (i.) check if ∃(𝑥′, 𝑦′) in 𝑇.

(ii.) if yes, return 𝑦′; if no, generate fresh 𝑦′ and add (𝑥′, 𝑦′) to 𝑇.

Important takeaways:

1. In any ROM situation:

• if nobody has asked a question 𝑥 yet…

• … then 𝑹(𝑥) is still uniformly random (and independent of everything!)

2. We can simulate the random oracle in reductions!

𝑹

𝑛 bits

2𝑛 entries

RANDOM ORACLES ⇒ collision-resistant hashing

Random Oracle Model (ROM).

What crypto can we build in this model?

Collision-resistant hash:

• recall: random functions are collision-resistant;

• (because preimages are uniformly distributed)

• so 𝑹 itself serves as a collision-resistant hash;

• if we want small outputs, can discard bits of output.

Note:

• this is now statistical collision-resistance;

• for normal hash functions, it was computational (i.e., against PPT adversaries.)

• remember: collision-resistant ⇒ one-way. So we also get one-way functions!

1. Define 𝑹: 0,1 n → 0,1 𝑛

by setting 𝑹 𝑥 ← 0,1 𝑛 for each 𝑥.

2. Put 𝑹 “into a box” so everyone
can query it, but only as an oracle.

𝑹𝑥 𝑹(𝑥)

RANDOM ORACLES ⇒ PRFs

Random Oracle Model (ROM).

What crypto can we build in this model?

Pseudorandom functions:

• sample a key: 𝑘 ← 0,1 𝑛/2;

• define

𝑭𝑘: 0,1
𝑛/2 → 0,1 𝑛/2

𝑭𝑘 𝑥 ≔ 𝑹(𝑥, 𝑘)

Why is it pseudorandom? Note: 𝑨 knows 𝑹!

1. take any algorithm 𝑨𝑭𝑘 . It makes some query 𝑥1;

2. Pr 𝑥1 = 𝑧, 𝑘 = 2−𝑛/2 for any 𝑧; so response is uniformly random in 0,1 𝑛/2;

3. in particular, 𝑨𝑭𝑘 learned nothing with the first query.

4. so we can repeat the argument starting from 1.

1. Define 𝑹: 0,1 n → 0,1 𝑛

by setting 𝑹 𝑥 ← 0,1 𝑛 for each 𝑥.

2. Put 𝑹 “into a box” so everyone
can query it, but only as an oracle.

𝑹𝑥 𝑹(𝑥)

𝑹

𝑛 bits

…

(0⋯00, 𝑘)

(0⋯01, 𝑘)

so 𝑭𝑘 is oracle indistinguishable
from a random function!

RANDOM ORACLES ⇒ lots of stuff

Random Oracle Model (ROM).

What crypto can we build in this model?

ROM

collision-resistant hashPRFPRG

IND-CPA
encryption

unforgeable MAC
(fixed-length)

unforgeable MAC
(arbitrary-length)

?

RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

KeyGen:

I. Sample 2ℓ random inputs to 𝑹:

• 𝑥1
0, 𝑥2

0, 𝑥3
0, … , 𝑥ℓ

0.

• 𝑥1
1, 𝑥2

1, 𝑥3
1, … , 𝑥ℓ

1.

Note each 𝑥𝑗
𝑏 ∈ 0,1 𝑛.

II. Now compute, for each 𝑗, 𝑏:

𝑦𝑗
𝑏 ≔ 𝑹 𝑥𝑗

𝑏 ;

III. Output key consisting of two parts:

1. 𝑥1
0, 𝑥2

0, 𝑥3
0, … , 𝑥ℓ

0 and 𝑥1
1, 𝑥2

1, 𝑥3
1, … , 𝑥ℓ

1;

2. 𝑦1
0, 𝑦2

0, 𝑦3
0, … , 𝑦ℓ

0 and 𝑦1
1, 𝑦2

1, 𝑦3
1, … , 𝑦ℓ

1;

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

IMPORTANT!
NEW IDEAS!

RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

Mac:

On input a message 𝑚 ∈ 0,1 ℓ:

Output tag 𝑡 ∈ 0,1 𝑛ℓ like this:

For each bit position 𝑗 = 1, 2, … , ℓ

output 𝑥
𝑗

𝑚𝑗.

Example:

Suppose 𝑚 = 010110.

So tag is (𝑥1
0, 𝑥2

1, 𝑥3
0, 𝑥4

1, 𝑥5
1, 𝑥6

0).

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

Ver:

On input 𝑚 ∈ 0,1 ℓ and tag (𝑡1, 𝑡2, … , 𝑡ℓ):

For each bit position 𝑗 = 1, 2, … , ℓ:

If 𝑅 𝑡𝑗 ≠ 𝑦
𝑗

𝑚𝑗 output reject;

output accept.

Example: Suppose 𝑚 = 010110.

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

𝑡1

𝑥1
1

𝑥2
0

𝑡2

𝑡3

𝑥3
1

𝑥4
0

𝑡4

𝑥5
0

𝑡5

𝑡6

𝑥6
1

𝑦1
0

𝑥1
1

𝑥2
0

𝑦2
1

𝑦3
0

𝑥3
1

𝑥4
0

𝑦4
1

𝑥5
0

𝑦5
1

𝑦6
0

𝑥6
1

𝑹 ?

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

𝑦1
0

𝑥1
1

𝑥2
0

𝑦2
1

𝑦3
0

𝑥3
1

𝑥4
0

𝑦4
1

𝑥5
0

𝑦5
1

𝑦6
0

𝑥6
1

𝑹

Honestly generated

RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

Check correctness:

• for message 𝑚 ∈ 0,1 ℓ…

• … tag is 𝑥1
𝑚1 , 𝑥2

𝑚2 , 𝑥3
𝑚3 , … , 𝑥ℓ

𝑚ℓ ;

• at the verification stage, we do this check for each 𝑗:

𝑹 𝑥
𝑗

𝑚𝑗 = 𝑦
𝑗

𝑚𝑗

• but in KeyGen this is exactly how we defined 𝑦𝑗
𝑏 for 𝑏 ∈ {0,1}.

• so verification succeeds.

So scheme is correct. Is it unforgeable?

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

RANDOM ORACLES ⇒ one-time authentication

Lamport scheme. One-time MAC for messages of length ℓ.

Let 𝑹: 0,1 𝑛 → 0,1 𝑛 be a random oracle.

So scheme is correct. Is it unforgeable?

Let’s look at the adversary’s view. It has two things:

Now adversary tries to forge on 𝑚∗ ≠ 𝑚.

There’s a bit 𝑗 where 𝑚∗ differs from 𝑚. Say 𝑗 = 2. Then…

Key

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

…

…

𝑥ℓ
0

𝑥ℓ
1

𝟎

𝟏

𝑹

𝑦1
0

𝑦1
1

𝑦2
0

𝑦2
1

𝑦3
0

𝑦3
1

…

…

𝑦ℓ
0

𝑦ℓ
1

𝟎

𝟏

𝑚 = 𝑚0𝑚1𝑚2…𝑚ℓ

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

𝑡 =

𝑚∗ = 𝑚0𝑚1
∗𝑚2…𝑚ℓ

𝑥1
0

𝑥1
1

𝑥2
0

𝑥2
1

𝑥3
0

𝑥3
1

𝑥4
0

𝑥4
1

𝑥5
0

𝑥5
1

𝑥6
0

𝑥6
1

𝑡∗ =

But 𝒙𝟐
𝟎 is random

and unknown.

