Instructor: Gorjan Alagic (<u>galagic@umd.edu</u>); ATL 3102, office hours: by appointment **Textbook:** *Introduction to Modern Cryptography*, Katz and Lindell;

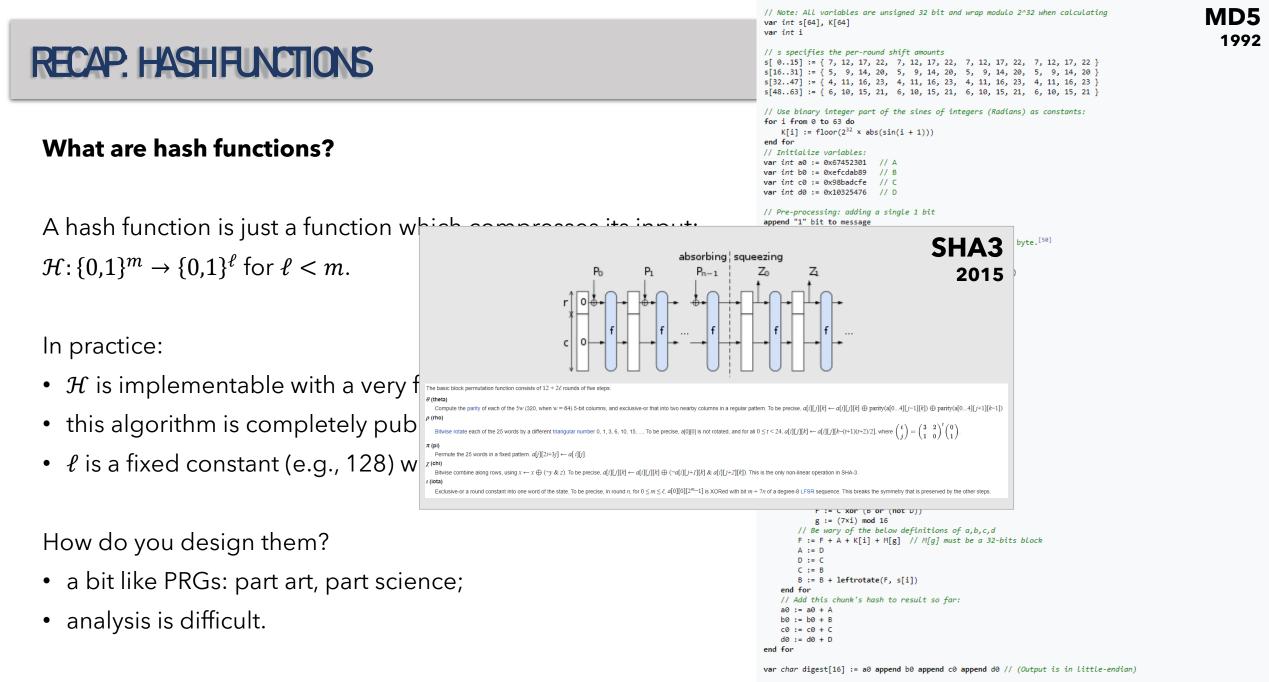
Webpage: <u>alagic.org/cmsc-456-cryptography-spring-2020/</u> (slides, reading posted here);
Piazza: piazza.com/umd/spring2020/cmsc456
ELMS: active, slides and reading posted there, homework 2 due midnight Thursday.
Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

- Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);
- Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

- Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL inside JQI)
- Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL inside JQI)



// leftrotate function definition
leftrotate (x, c)
 return (x << c) binary or (x >> (32-c));

RECAP. HASHFUNCTIONS

What are they good for?

They compress their input: $\mathcal{H}: \{0,1\}^m \to \{0,1\}^{\ell}$ for $\ell < m$.

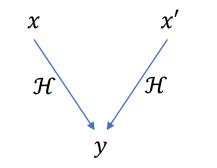
So obviously, some $y \in \{0,1\}^{\ell}$ have a *lot* of preimages: at least $2^{m-\ell}$.

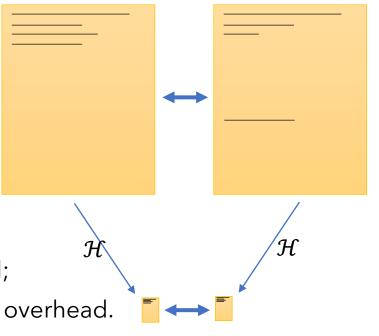
But, for a well-designed hash function:

- *h* seems to be 1-to-1;
- typically hard to find two inputs x, x' with the same **digest** $\mathcal{H}(x)$;
- *typically* also hard: given a digest y, find an input x such that $\mathcal{H}(x) = y$.

This is why they are used, e.g., in **git**:

- files are not compared directly;
- instead, a hash (digest) of each file is stored, and the hashes are compared;
- this allows for all sorts of integrity checks without a massive computational overhead. They're also used, e.g., in **blockchains** (e.g., in Bitcoin) for similar reasons.





RECAP. HASHFUNCTIONS, FORMALLY

We will think about keyed hash functions.

Definition. A hash function \mathcal{H} is a polynomial-time computable function family

 $\mathcal{H}{:}\,\{0,1\}^d\times\{0,1\}^*\to\{0,1\}^\ell$

equipped with a PPT algorithm **KeyGen** which, on input 1^n , outputs a key $s \in \{0,1\}^d$.

We write $\mathcal{H}^{s}(x) \coloneqq \mathcal{H}(s, x)$.

How to use it?

Typically:

Why? In practice, anyone can look up hash function spec

- 1. Sample $s \leftarrow \mathbf{KeyGen}(1^n)$;
- 2. Make *s* public to everyone;
- 3. Now anyone can evaluate \mathcal{H}^s on any string x and get the hash digest $\mathcal{H}^s(x)$.

RECAP. COLLISION-RESISTANCE

What security properties do we want?

There are many. An important one: collision-resistance.

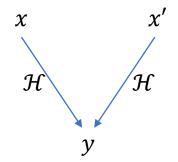
- as we saw, every hash function is necessarily *many-to-one*;
- but in a **good** hash function, it should be hard to find inputs with the same digest.

If this sounds impossible:

Think about a random function $R: \{0,1\}^{2n} \rightarrow \{0,1\}^n$

- it's true that each $y \in \{0,1\}^n$ has (roughly) 2^n preimages;
- let $X_y = \{x \in \{0,1\}^{2n} : \mathbf{R}(x) = y\}$ be the set of preimages of y;
- Note: X_y is a random subset of size 2^n in a set of size 2^{2n} ;
- In other words: for any z, $\Pr_{R}[z \in X_{y}] \approx 2^{-n}$.

So, there are indeed functions for which it's hard to find preimages and collisions. (Actually, in a certain sense, *most* functions have this property.)



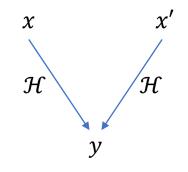
How to define?

As usual: with a game!

Let $\Pi = (\text{KeyGen}, \mathcal{H})$ be a hash function, and A an algorithm. The game HashColl(Π, A) proceeds as follows:

- 1. Generate key: $s \leftarrow KeyGen$;
- 2. A receives s and outputs $x, x' \in \{0,1\}^*$;

We say **A** wins if $\mathcal{H}^{s}(x) = \mathcal{H}^{s}(x')$ and $x \neq x'$.



Definition. A hash function $\Pi = (KeyGen, \mathcal{H})$ is **collision-resistant** if, for every PPT adversary A,

 $\Pr[A \text{ wins HashColl}(\Pi, A)] \leq \operatorname{negl}(n).$

What is collision resistance good for?

Authentication!

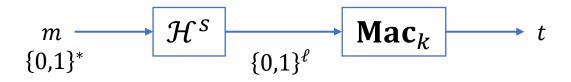
Construction (Hash-and-MAC). Let

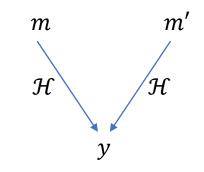
- $\Pi = (KeyGen, Mac)$ be a fixed-length message authentication code (MAC), and
- $\Pi_{\rm H} = (\text{KeyGen}_{\rm H}, \mathcal{H})$ be a hash function.

Define an arbitrary-length deterministic MAC $\Pi' = (KeyGen', Mac')$ as follows:

- (key generation) **KeyGen**': on input 1^n , outputs $k' \leftarrow (KeyGen(1^n), KeyGen_H(1^n))$.
- (tag generation) **Mac**': on key (k, s) and message m, outputs $t := Mac_k(\mathcal{H}^s(m))$.

In pictures:





Construction (Hash-and-MAC). Let

- $\Pi = (KeyGen, Mac)$ be a fixed-length message authentication code (MAC), and
- $\Pi_{\rm H} = (\text{KeyGen}_{\rm H}, \mathcal{H})$ be a hash function.

Define an arbitrary-length deterministic MAC $\Pi' = (KeyGen', Mac')$ as follows:

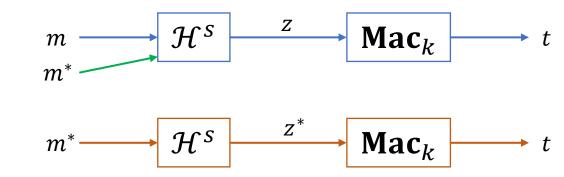
- (key generation) **KeyGen**': on input 1^n , outputs $k' \leftarrow (KeyGen(1^n), KeyGen_H(1^n))$.
- (tag generation) **Mac**': on key (k, s) and message m, outputs $t := Mac_k(\mathcal{H}^s(m))$.

Theorem. If Π is an EUF-CMA fixed-length MAC, and $\Pi_{\rm H}$ is a collision-resistant hash function, then the Hash-and-MAC construction Π' is an EUF-CMA arbitrary-length MAC.

Proof idea:

If adversary forges on message m^* then either/or:

- 1. m^* is mapped to same z as some queried m: collision!
- 2. m^* is **not** mapped to same as any other: **forgery on** Π !



Proof idea: If forgery on m^* then either/or:

- 1. m^* is mapped to same z as some queried m: collision!
- 2. m^* is **not** mapped to same as any other: forgery on $\Pi!$

Recall EUF-CMA and MacForge experiment.

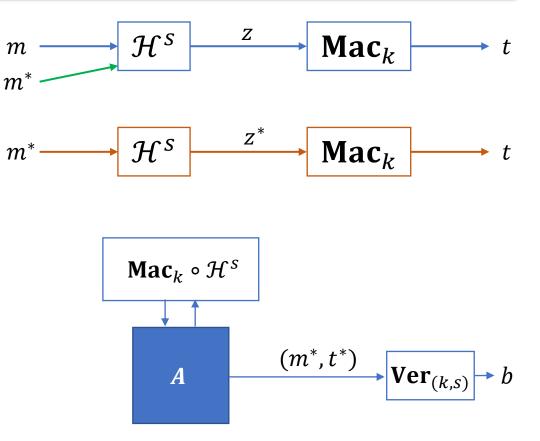
- let Q be the set of queries made by A, and (m^*, t^*) its output;
- let **E** be the green event: $\exists m \in Q$ such that $\mathcal{H}^{s}(m) = \mathcal{H}^{s}(m^{*})$;

Calculate:

 $\Pr[A \text{ wins MacForge}(\Pi')] =$

- = $\Pr[A \text{ wins MacForge}(\Pi') \land E] + \Pr[A \text{ wins MacForge}(\Pi') \land \overline{E}]$
- $\leq \Pr[\mathbf{E}] + \Pr[A \text{ wins MacForge}(\Pi') \land \overline{\mathbf{E}}].$

We will show that both of these terms are negligible. How?



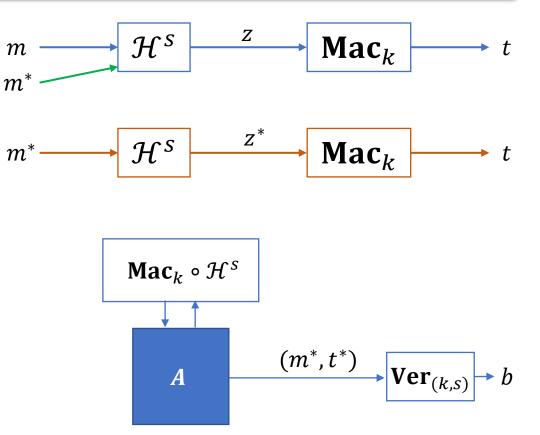
Proof idea: If forgery on m^* then either/or:

- 1. m^* is mapped to same z as some queried m: collision!
- 2. m^* is **not** mapped to same as any other: forgery on $\Pi!$

Controlling probability of E:

- *E* is the green event: $\exists m \in Q$ such that $\mathcal{H}^{s}(m) = \mathcal{H}^{s}(m^{*})$;
- want to show: $\Pr[\mathbf{E}] \leq \operatorname{negl}(n)$.
- how? Well, suppose it's not, and consider this algorithm:
- 1. Receive hash key *s* as input. Sample **Mac** key *k*;
- 2. Run *A* with oracle $Mac_k \circ \mathcal{H}^s$;
- 3. Output m^* and a random $m \in Q$.

Check: the probability that this algorithm finds a collision in \mathcal{H}^s is at least $\Pr[\mathbf{E}]/|Q|$.



Proof idea: If forgery on m^* then either/or:

1. m^* is mapped to same z as some queried m: collision!

2. m^* is **not** mapped to same as any other: forgery on $\Pi!$

What's left:

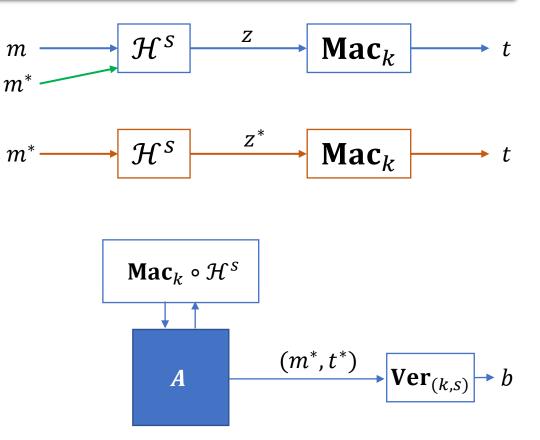
Control $\Pr[A \text{ wins MacForge}(\Pi') \land \overline{E}]$.

- what is this quantity?
- probability that **A** wins the forgery game...
- ... and for all queried $m, \mathcal{H}^{s}(m) \neq \mathcal{H}^{s}(m^{*})$.

Stated a bit differently:

- probability that **A** wins the forgery game...
- ... and for all inputs z to Mac_k oracle, $z \neq z^* \coloneqq \mathcal{H}^s(m^*)$.

Point: in this case, we should be able to win a MacForge game against $\Pi!$



Proof idea: If forgery on m^* then either/or:

1. m^* is mapped to same z as some queried m: collision!

2. m^* is **not** mapped to same as any other: forgery on $\Pi!$

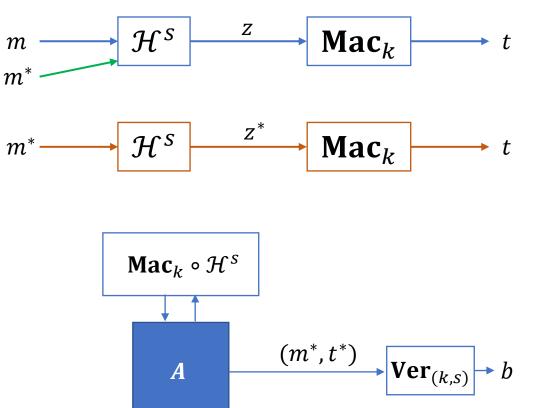
What's left:

Control $\Pr[A \text{ wins MacForge}(\Pi') \land \overline{E}]$. If it's large...

 \dots then we should be able to win a MacForge game against Π ! Here's how:

- 1. Receive **Mac**_k oracle. Sample hash key s;
- 2. When queried with $m \in \{0,1\}^*$...
 - i. Hash it: $z \coloneqq \mathcal{H}^{s}(m)$;
 - ii. MAC it (using oracle): $t \coloneqq Mac_k(z)$; return t.
- 3. When **A** outputs m^* , output $\mathcal{H}^s(m^*)$.

Check: probability this wins MacForge versus Π is exactly $\Pr[A \text{ wins MacForge}(\Pi') \land \overline{E}]$.



Proof idea: If forgery on m^* then either/or:

- 1. m^* is mapped to same z as some queried m: collision!
- 2. m^* is **not** mapped to same as any other: **forgery on** Π !

Recall EUF-CMA and MacForge experiment.

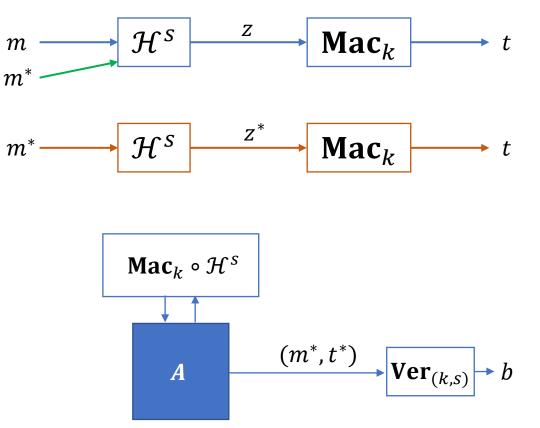
- let Q be the set of queries made by A, and (m^*, t^*) its output;
- let **E** be the green event: $\exists m \in Q$ such that $\mathcal{H}^{s}(m) = \mathcal{H}^{s}(m^{*})$;

Calculate:

 $\Pr[A \text{ wins MacForge}(\Pi')] =$

- = $\Pr[A \text{ wins MacForge}(\Pi') \land E] + \Pr[A \text{ wins MacForge}(\Pi') \land \overline{E}]$
- $\leq \Pr[\mathbf{E}] + \Pr[A \text{ wins MacForge}(\Pi') \land \overline{\mathbf{E}}]$

 $\leq \operatorname{negl}(n) + \operatorname{negl}(n) \leq \operatorname{negl}(n).$



HASHFUNCTIONS continued

Reading: (p.156-160, 174-181)

More on hash functions:

- 1. Keyed **vs** unkeyed;
- 2. Arbitrary-length inputs **vs** fixed-length inputs;
- 3. Hash functions as random oracles.

Keyed vs unkeyed hash functions.

I did something funny...

- I first cited some public hash functions (like MD5 and SHA3)...
- ... clearly, these hashes do not have a "key." They are fixed algorithms!
- but then I defined a hash function to have a key!
- and that key seems pretty critical!

This is pretty standard in cryptography. Why?

Why do we use keyed hash functions in formal reasoning?

HASHFUNCTIONS, FORMALLY

Why keyed hash functions?

- There actually do exist keyed hash functions, and they are interesting! (maybe we will get to them later in the course.)
- 2. An annoying technicality:
- technically, an unkeyed hash is a completely fixed (and hence known) object.
- this means that, if we were to strictly follow our theoretical formalism...
- ... algorithms could have *hard-coded* properties of the hash: collisions, preimages, etc.

This is analogous to this juxtaposition:

Fix a boolean formula φ of size 10^{200} . Is it NP-hard to determine if φ is satisfiable? **NO**. Is it NP-hard to determine, given an arbitrary formula ψ as input, if ψ is satisfiable? **YES**.

In spirit: a keyed hash models the fact that, in reality,

... nobody really "knows" anything about SHA3 except a few of its values!

More on hash functions:

1. Keyed **vs** unkeyed;

2. Arbitrary-length inputs **vs** fixed-length inputs;

3. Hash functions as random oracles.

HASHFUNCTIONS: ARETRARY-LENGTHINPUTS

We've been assuming...

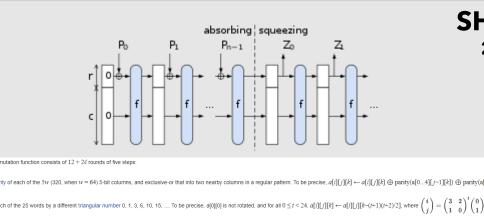
... hash functions can take in arbitrary strings. Pretty important for Hash-and-MAC!

- in practice, that doesn't come for free;
- we first construct a fixed-length hash, like this:

 $\mathcal{H}{:}\{0{,}1\}^{2n}\rightarrow \{0{,}1\}^n$

- maybe for a fixed n (e.g., n = 128)...
- ... and then apply a transformation that enables arbitrary-length inputs.

The simplest is the Merkle-Damgård transform.



SHA3

2015

HASHFUNCTIONS: ARBITRARY-LENGTHINPUTS

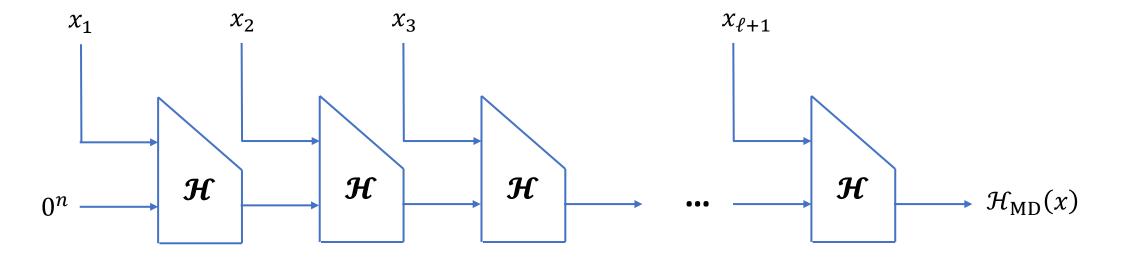
Merkle-Damgård transform

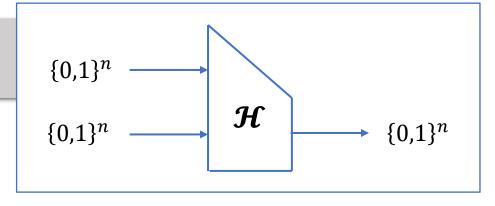
What does it do?

- transforms one algorithm into another;
- input algorithm: computes a fixed-length compression function (e.g., $\mathcal{H}: \{0,1\}^{2n} \rightarrow \{0,1\}^n$);
- <u>output algorithm</u>: computes an arbitrary-input-length hash function \mathcal{H}_{MD} : $\{0,1\}^* \rightarrow \{0,1\}^n$;

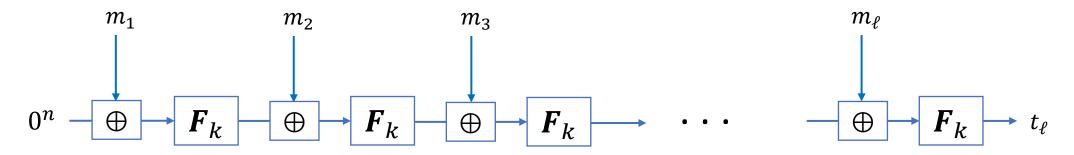
How does it work?

Split up input:
$$x = (x_1, x_2, ..., x_\ell)$$
 so each $x_i \in \{0,1\}^n$. Set $x_{\ell+1} \coloneqq |x|$.

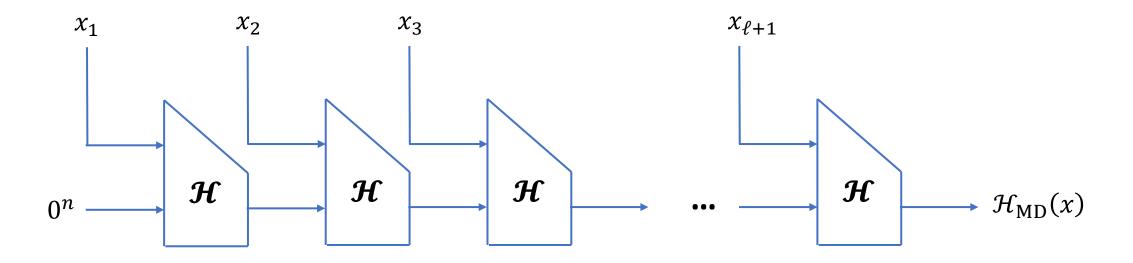




Compare: CBC-MAC



Compare: Merkle-Damgård transform

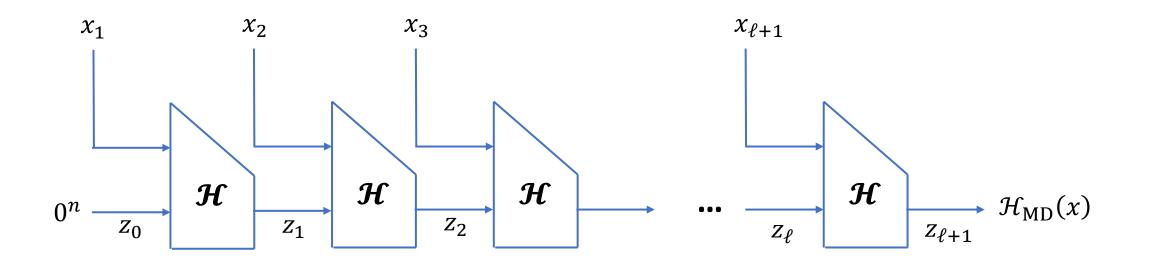


Merkle-Damgård transform

Construction (Merkle-Damgård).

Let (**KeyGen**_H, \mathcal{H}) be a hash function, and suppose $\mathcal{H}: \{0,1\}^{2n} \to \{0,1\}^n$. Define a new hash function:

- KeyGen_{H_{MD}}: same as KeyGen_H;
- $\mathcal{H}_{MD}: \{0,1\}^* \to \{0,1\}^n$ defined as follows, on input x:
 - 1. assume length |x| of x is divisible by n (otherwise pad with 0s);
 - 2. split x as $x = (x_1, x_2, \dots, x_\ell)$ and set $x_{\ell+1} \coloneqq |x|$.
 - 3. set $z_0 = 0^n$; compute $z_i = \mathcal{H}(x_i, z_{i-1})$;
 - 4. output $z_{\ell+1}$.



Merkle-Damgård transform

Remember:

- critical property we needed for integrity checks...
- ... and for Hash-and-MAC...
- ... was collision-resistance!

What happens when we apply MD?

Theorem. If \mathcal{H} is a collision-free hash function, then so is its Merkle-Damgård transform \mathcal{H}_{MD} .

See book for proof. It's fairly straightforward.

More on hash functions:

- 1. Keyed **vs** unkeyed;
- 2. Arbitrary-length inputs **vs** fixed-length inputs;
- 3. Hash functions as random oracles.

RANDOMORACI FS

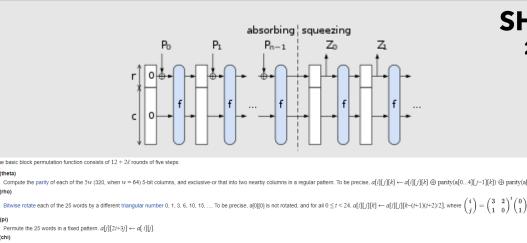
Recall:

We constructed stuff from the collision-resistant property.

But in practice, for good hash functions:

- nobody knows what to do except evaluate;
- and, when they evaluate...
- ... they can't distinguish output from random!
- (can you come up with a "security game" for this task?)

This is **much stronger** than just collision-resistance!



 ${\mathcal H}$

 $\boldsymbol{\chi}$

 $\mathcal{H}(x)$

 θ (theta

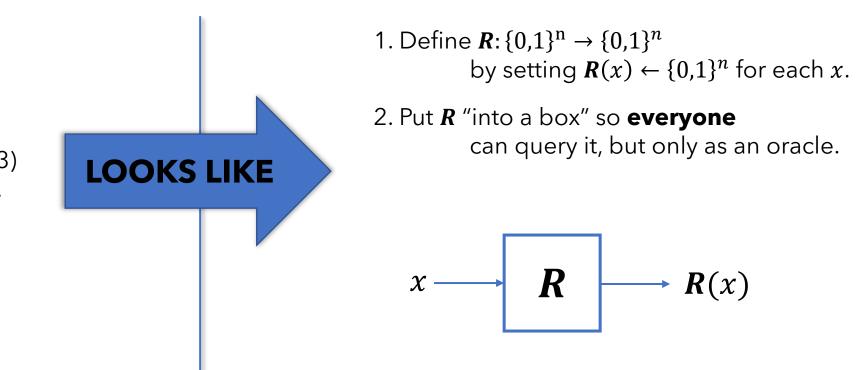
π (pi) γ (chi SHA3

2015

So really...

It seems like hash functions behave like **random oracles!** It's **as if** someone sampled a uniformly random function **R**... ... and then put it in an oracle!

A strong hash function (like SHA-3) is developed and standardized.



Some caveats:

- this is just a general impression;
- for example:
- 1. A hash function is a fixed, deterministic object;
- A random oracle is drawn from a distribution of functions.
 So we should be careful!

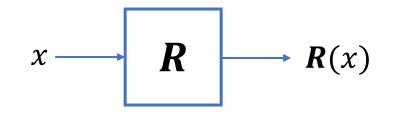
But what can we do in such a model?

It's called "The Random Oracle Model" (ROM.)

Let's assume that it's real. What does it get us?

1. Define $\mathbf{R}: \{0,1\}^n \to \{0,1\}^n$ by setting $\mathbf{R}(x) \leftarrow \{0,1\}^n$ for each x.

2. Put *R* "into a box" so **everyone** can query it, but only as an oracle.



RANDOMORACLES

Random Oracle Model (ROM). 1. Define **R**: $\{0,1\}^n \to \{0,1\}^n$ *n* bits by setting $\mathbf{R}(x) \leftarrow \{0,1\}^n$ for each x. A useful observation: R Suppose it is OUR job to sample **R**. How could we do it? 2. Put **R** "into a box" so **everyone** can query it, but only as an oracle. I. generate a huge lookup table with 2^n entries; put a random string from $\{0,1\}^n$ in each entry. R $\boldsymbol{R}(\boldsymbol{x})$ 2^n entries II. be lazy about it! wait until someone asks a question x...generate a random value y and output it as $\mathbf{R}(x) \coloneqq y$. \dots and store the pair (x, y) in a lookup table T. for future questions x': (i.) check if $\exists (x', y')$ in **T**.

(ii.) if yes, return y'; if no, generate fresh y' and add (x', y') to T.

Random Oracle Model (ROM).

Lazy sampling:

wait until someone asks a question x... generate a random value y and output it as $\mathbf{R}(x) \coloneqq y$ and store the pair (x, y) in a lookup table T. for future questions x': (i.) check if $\exists (x', y')$ in T. (ii.) if yes, return y'; if no, generate fresh y' and add (x', y') to T.

Important takeaways:

- 1. In any ROM situation:
 - if <u>nobody</u> has asked a question *x* yet...
 - ... then R(x) is still uniformly random (and independent of everything!)
- 2. We can simulate the random oracle in reductions!

n bits 2^n entries

Random Oracle Model (ROM).

What crypto can we build in this model?

Collision-resistant hash:

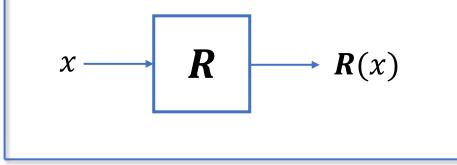
- recall: random functions are collision-resistant;
- (because preimages are uniformly distributed)
- so **R** itself serves as a collision-resistant hash;
- if we want small outputs, can discard bits of output.

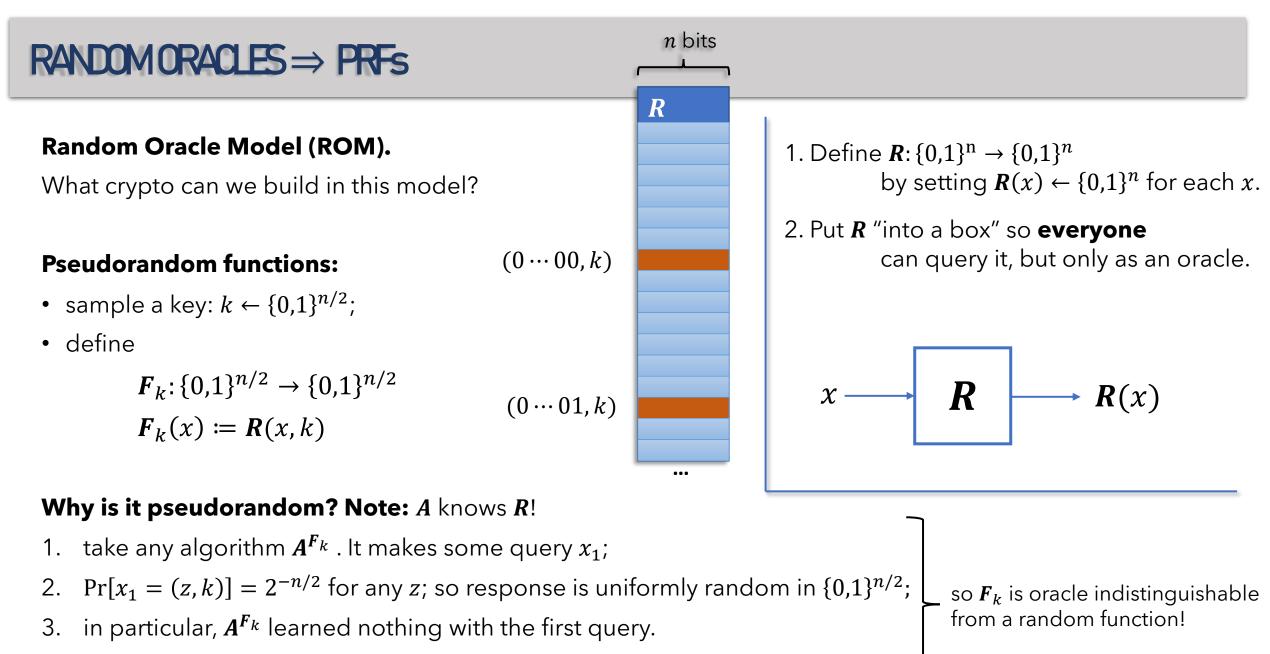
Note:

- this is now statistical collision-resistance;
- for normal hash functions, it was computational (i.e., against PPT adversaries.)
- remember: collision-resistant ⇒ one-way. So we also get one-way functions!

1. Define $\mathbf{R}: \{0,1\}^n \to \{0,1\}^n$ by setting $\mathbf{R}(x) \leftarrow \{0,1\}^n$ for each x.

2. Put *R* "into a box" so **everyone** can query it, but only as an oracle.



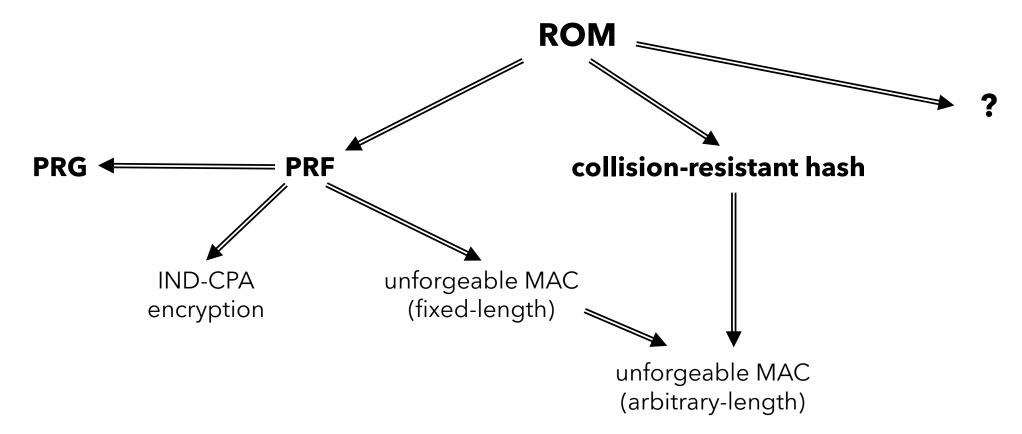


4. so we can repeat the argument starting from 1.

$\textbf{RANDOM ORACLES} \Rightarrow \textbf{lots of stuff}$

Random Oracle Model (ROM).

What crypto can we build in this model?



Lamport scheme. One-time MAC for messages of length ℓ . Let $\mathbf{R}: \{0,1\}^n \to \{0,1\}^n$ be a random oracle.

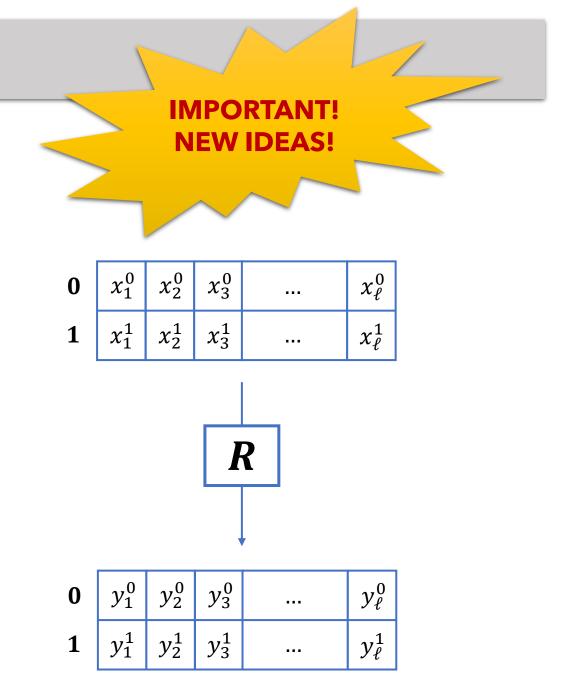
KeyGen:

- I. Sample 2ℓ random inputs to **R**:
- $x_1^0, x_2^0, x_3^0, \dots, x_\ell^0$.
- $x_1^1, x_2^1, x_3^1, \dots, x_{\ell}^1$.

Note each $x_j^b \in \{0,1\}^n$.

II. Now compute, for each *j*, *b*: $y_j^b \coloneqq \mathbf{R}(x_j^b);$

III. Output key consisting of two parts: 1. x_1^0 , x_2^0 , x_3^0 , ..., x_{ℓ}^0 and x_1^1 , x_2^1 , x_3^1 , ..., x_{ℓ}^1 ; 2. y_1^0 , y_2^0 , y_3^0 , ..., y_{ℓ}^0 and y_1^1 , y_2^1 , y_3^1 , ..., y_{ℓ}^1 ;



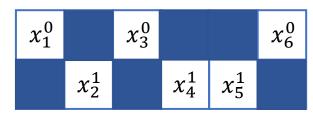
Lamport scheme. One-time MAC for messages of length ℓ . Let $\mathbf{R}: \{0,1\}^n \to \{0,1\}^n$ be a random oracle.

Mac:

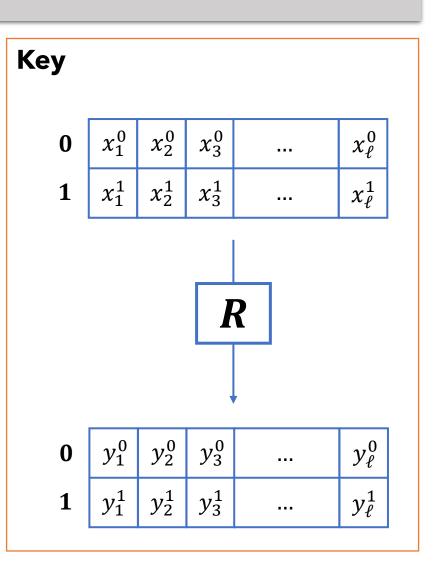
On input a message $m \in \{0,1\}^{\ell}$: Output tag $t \in \{0,1\}^{n\ell}$ like this: For each bit position $j = 1, 2, ..., \ell$ output $x_j^{m_j}$.

Example:

Suppose m = 010110.



So tag is $(x_1^0, x_2^1, x_3^0, x_4^1, x_5^1, x_6^0)$.

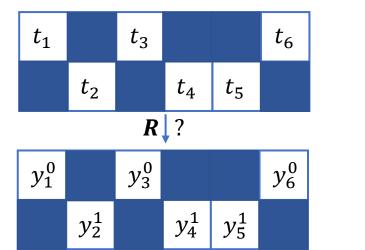


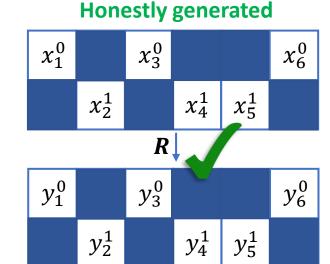
Lamport scheme. One-time MAC for messages of length ℓ . Let $\mathbf{R}: \{0,1\}^n \to \{0,1\}^n$ be a random oracle.

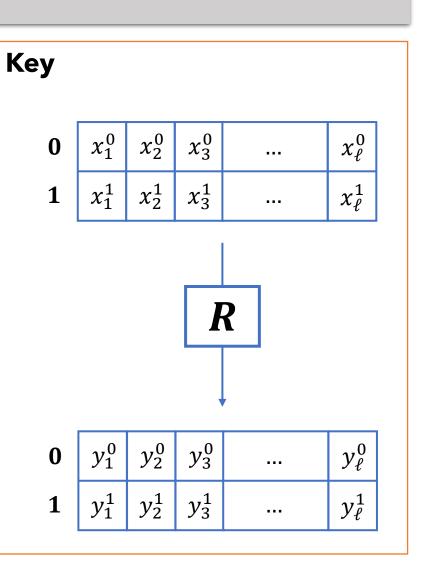
Ver:

On input $m \in \{0,1\}^{\ell}$ and tag $(t_1, t_2, ..., t_{\ell})$: For each bit position $j = 1, 2, ..., \ell$: If $\left(R(t_j) \neq y_j^{m_j}\right)$ output **reject;** output **accept.**

Example: Suppose m = 010110.





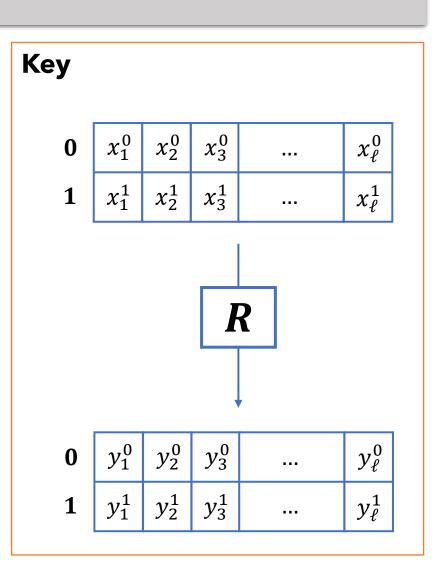


Lamport scheme. One-time MAC for messages of length ℓ . Let $\mathbf{R}: \{0,1\}^n \to \{0,1\}^n$ be a random oracle.

Check correctness:

- for message $m \in \{0,1\}^{\ell} \dots$
- ... tag is $(x_1^{m_1}, x_2^{m_2}, x_3^{m_3}, ..., x_{\ell}^{m_{\ell}});$
- at the verification stage, we do this check for each *j*:
 - $\boldsymbol{R}\left(\boldsymbol{x}_{j}^{m_{j}}\right) = \boldsymbol{y}_{j}^{m_{j}}$
- but in **KeyGen** this is exactly how we defined y_j^b for $b \in \{0,1\}$.
- so verification succeeds.

So scheme is correct. Is it unforgeable?



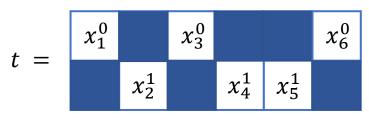
Lamport scheme. One-time MAC for messages of length ℓ .

Let $\mathbf{R}: \{0,1\}^n \to \{0,1\}^n$ be a random oracle.

So scheme is correct. Is it unforgeable?

Let's look at the adversary's view. It has two things:

 $m = m_0 m_1 m_2 \dots m_\ell$



Now adversary tries to forge on $m^* \neq m$.

There's a bit *j* where *m*^{*} differs from *m*. Say *j* = 2. Then... $m^* = m_0 m_1^* m_2$ *m*₂ $t^* = \begin{bmatrix} x_1^0 & x_2^0 \\ x_1^0 & x_2^0 \end{bmatrix}$ But x_2^0 is random and unknown. $x_4^* & x_5^*$

