
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (slides, reading);

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there, first homework is up (due midnight Thursday.)

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from IRB 5234)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (Iribe);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (Iribe);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL, starting Feb 4)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL, starting Feb 6)

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/


HOMEWORK RULES AND GUIDELINES : 

First homework is up (due midnight Thursday.)

Rules

• collaboration ok, solutions must be written up by yourself, in your own words;

• late homeworks will not be accepted (no exceptions, but lowest grade will be dropped.)

Explanations and proofs

• correct answers with no explanation will get a zero score;

• explain your ideas clearly and completely;

• write in complete sentences, use correct and complete mathematical notation (as in lectures and book);

• proofs need to be rigorous, clear, and complete (consider all cases, prove counterexamples, etc.)

Suggestions

• work on your own at least some of the time for each assignment

• work in 25+ minute chunks of uninterrupted, distraction-free, device-free time

• develop intuition: try lots of examples, ask yourself questions, “play” with the concepts



RECAP: SEMANTIC SECURITY

Recall: “semantic security” is a meaningful, intuitive notion;

It says something like this:

“observing the ciphertext doesn’t help the adversary learn anything new about the plaintext.”

A bit more carefully:

“no matter what the adversary already knows about the plaintext…

… observing the ciphertext doesn’t help him learn anything more.”

Things to capture formally:

• existing knowledge;

• new knowledge;

• “doesn’t help”.



RECAP: SEMANTIC SECURITY under CHOSEN PLAINTEXT ATTACK

Formally:

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is SEM-CPA secure if, for every PPT 
algorithm 𝑨 (“adversary”) there exists a PPT algorithm 𝑺 (“simulator”) such that the following holds.

For every PPT algorithm 𝐒𝐚𝐦𝐩 and every pair of poly-time computable functions ℎ and 𝑓,

Pr 𝑨𝐄𝐧𝐜𝑘 ℎ 𝑚 , 𝐄𝐧𝐜𝑘 𝑚 = 𝑓(𝑚) − Pr 𝑺𝐄𝐧𝐜𝑘 ℎ 𝑚 = 𝑓(𝑚) ≤ negl 𝑛 .
𝑚 ← 𝐒𝐚𝐦𝐩 𝑚 ← 𝐒𝐚𝐦𝐩

vs𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘

𝑺
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘



RECAP: SEM-CPA vs IND-CPA

This is really messy. IND-CPA is way simpler to work with.

Totally awesome:

• we get the real, meaningful security strength promised by semantic security…

• … but we can use the much simpler and cleaner indistinguishability definition.

• (for example, when doing proofs!)

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is SEM-CPA if, for every PPT algorithm 𝑨
(“adversary”) there exists a PPT algorithm 𝑺 (“simulator”) such that the following holds.

For every PPT algorithm 𝐒𝐚𝐦𝐩 and every pair of poly-time computable functions ℎ and 𝑓,

Pr 𝑨𝐄𝐧𝐜𝑘 ℎ 𝑚 , 𝐄𝐧𝐜𝑘 𝑚 = 𝑓(𝑚) − Pr 𝑺𝐄𝐧𝐜𝑘 ℎ 𝑚 = 𝑓(𝑚) ≤ negl 𝑛 .
𝑚 ← 𝐒𝐚𝐦𝐩 𝑚 ← 𝐒𝐚𝐦𝐩

Theorem. IND-CPA ⟺ SEM-CPA.



𝑺

RECAP: SEM-CPA = IND-CPA

Claim: IND-CPA ⇒ SEM-CPA.

• suppose a scheme is IND-CPA;

• let’s prove that it must also be SEM-CPA;

• direct approach: show how to, given any adversary 𝑨, construct a simulator 𝑺.

In pictures:

We’re given this:

𝑨
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘(0
𝑚 )

By IND-CPA!



RECAP: PRF ENCRYPTION is IND-CPA

What’s the proof idea?

1. by the PRF property, I should be able to replace 𝑭𝑘 above with a totally random function 𝑹…

… without the adversary noticing the difference.

2. but after that replacement, look at how the scheme works:

• for each message 𝑚…

• … we pick a random string of the same length as 𝑚 (specifically, 𝑹(𝑟));

• and we use it to one-time pad 𝑚!

3. this is perfectly secret!

Construction (PRF encryption). Let 𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ be a PRF. Define a scheme:

• 𝐊𝐞𝐲𝐆𝐞𝐧: sample a PRF key 𝑘 ← 0,1 𝑛;
• 𝐄𝐧𝐜: on input a message 𝑚 ∈ 0,1 ℓ, sample 𝑟 ← 0,1 𝑚 and output (𝑟, 𝑭𝑘 𝑟 ⊕𝑚);
• 𝐃𝐞𝐜: on input a ciphertext (𝑟, 𝑐), output 𝑐 ⊕ 𝑭𝑘 𝑟 .

Theorem. The PRF scheme is IND-CPA.



𝑫
𝑮

RECAP: PRF SCHEME IS IND-CPA

Strategy: if claim is false, then we can build a distinguisher between PRF and RF (& violate PRF property!)

What’s the distinguisher? It’s a simulation of the INDCPA experiment vs 𝑨!

Key claim. For every PPT 𝑨,
Pr[𝑨 wins INDCPA experiment vs Π𝐏𝐑𝐅 ] − Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤ negl 𝑛 .

𝑨

simulate
Enc

𝑧 ∈ {0,1}.

simulate Enc:
• on input 𝑚;
• sample 𝑟 ← 0,1 𝑚

• query: 𝑠 = 𝑮(𝑟);
• output (𝑟,𝑚 ⊕ 𝑠).

𝑚0, 𝑚1

Generate 𝑏 ← 0,1
Compute 𝑐 = 𝐄𝐧𝐜(𝑚𝑏)

𝑐

𝑏′
If 𝑏 = 𝑏′, output 1;
Otherwise output 0. 𝑧 ∈ {0,1}.



RECAP: SECRECY and ENCRYPTION

Our focus so far: secrecy.

Two settings:

1. Perfect secrecy (information-theoretic)

• One-time pad: 𝑛 bit key encrypts 𝑛-bit message

• Shannon’s theorem: one-time pad is optimal.

2. Computational secrecy

• pseudorandom generators: 𝑛-bit key, poly(𝑛)-bit messages;

• pseudorandom functions: 𝑛-bit key, poly(𝑛)-many poly(𝑛)-bit messages;

• much more powerful security: even secret against chosen plaintext attacks (CPA);

• security proofs.

Alice Bob
Eve

𝐄𝐧𝐜



IS CRYPTO JUST SECRECY?

Secrecy: protects against Eve learning our message.

What else could go wrong?

Eve could spoof!

Is this possible? The message is encrypted!

Consider OTP:

• Eve simply sends a string 𝑐;

• Bob decrypts: 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑘 = 𝑚.

• Bob has no way to tell if the message was authentic (besides looking at its structure.)

If messages are supposed to be highly structured (e.g., English sentences), maybe this is ok.

If it’s just data, then maybe not.

Alice Bob
Eve



IS CRYPTO JUST SECRECY?

Secrecy: protects against Eve learning our message.

What else could go wrong?

Eve could interfere!

Is this possible? The message is encrypted!

Consider OTP:

• Eve observes a ciphertext 𝑐 = 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕ 𝑘;

• She flips some bits: 𝑐 ↦ 𝑐 ⊕ 𝑠;

• Bob decrypts: 𝐃𝒆𝐜𝑘 𝑐 ⊕ 𝑠 = 𝑐 ⊕ 𝑠 ⊕ 𝑘 = 𝑠 ⊕ 𝑐 ⊕ 𝑘 = 𝑠 ⊕𝑚.

• Eve’s attack was directly applied to the message!

If 𝑚 was a bank deposit, Eve could flip the bits that add thousands (or millions) to the amount!

Alice Bob
Eve



IS CRYPTO JUST SECRECY?

Secrecy: protects against Eve learning our message.

What else could go wrong?

Eve could interfere!

Is this possible? The message is encrypted!

Consider OTP:

• Eve observes a ciphertext 1111 = 0000 ⊕ 1111

• She flips some bits: 1111 ↦ 1110

• Bob decrypts: 1110 ⊕ 1111 = 0001.

• Eve’s attack was (“flip last bit”) directly applied to the message!

Alice Bob
Eve

for example



WHAT ABOUT FANCIER ENCRYPTION?

What about PRG and PRF encryption?

Both based on OTP!

So same attacks work!

For example, interference against PRF scheme:

• Eve observes a ciphertext 𝑟, 𝑐 ≔ 𝐄𝐧𝐜𝑘 𝑚 = (𝑟,𝑚 ⊕ 𝑭k 𝑟 );

• She flips some bits: 𝑟, 𝑐 ↦ (𝑟, 𝑐 ⊕ 𝑠);

• Bob decrypts: 𝐃𝐞𝐜𝑘 𝑟, 𝑐 ⊕ 𝑠 = 𝑐 ⊕ 𝑠 ⊕ 𝑭𝑘 𝑟 = 𝑠 ⊕𝑚.

• Eve’s attack was directly applied to the message!

All the extra secrecy protection of the PRF scheme did not help at all!

Alice Bob
Eve



V. AUTHENTICATION

Reading: (p.107-123, 142-145)



AUTHENTICATION

We now change tasks:

• forget secrecy for the moment!

• and instead consider authenticity.

• (we will talk about combining them later.)

The task:

• Alice wants to send a message to Bob;

• Bob’s goal: make sure message is really from Alice…

• … and nobody else!

Assumptions:

• Alice and Bob can share a secret in advance (and have private spaces);

• Alice can send only one transmission (for now);

• Eve can change (or replace) the transmission however she likes!

• (… but we don’t care if she can learn the message.)

Alice Bob
Eve



AUTHENTICATION

In a bit more detail.

New: Eve can always guess ෥𝑚! 

• since at least one string must get accepted, this gives her success probability 2−| ෥𝑚|.

• compare: in secrecy, we could get perfect security. Here we have to pay, at least a little.

Alice Bob
Eve

𝑘

𝑘 𝑘

Pick message 𝑚.

෥𝑚 decide:
YES message was from Alice!
NO it was tampered with!



AUTHENTICATION

In a bit more detail.

How should Alice and Bob proceed?

For secrecy, they used encryption schemes.

For authentication, it will be message authentication codes (MACs).

Alice Bob
Eve

𝑘

𝑘 𝑘

Pick message 𝑚.

෥𝑚 decide:
YES message was from Alice!
NO it was tampered with!



MESSAGE AUTHENTICATION CODES

Message authentication code (MAC):

• generate key: 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

• generate tag: 𝑡 ← 𝐌𝐚𝐜𝑘 𝑚

• verify (message, tag) pair: 𝑏 ← 𝐕𝐞𝐫𝑘 𝑚, 𝑡 [ 𝑏 = 1 (valid) or 𝑏 = 0 (invalid) ]

Correctness:

𝐕𝐞𝐫𝑘 𝑚,𝐌𝐚𝐜𝑘 𝑚 = 1.

Alice Bob
Eve

𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

𝑘 𝑘

Pick message 𝑚.
Set 𝑡 = 𝐌𝐚𝐜𝑘 𝑚

(𝑚, 𝑡)
Compute 𝑏 = 𝐕𝐞𝐫𝑘 𝑚, 𝑡
𝑏 = 1 : YES message was from Alice!
𝑏 = 0 : NO it was tampered with!



MESSAGE AUTHENTICATION CODES

How to use a MAC.

First, generate a key and share it:  𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

To send a message:

1. pick message 𝑚 you want to send;

2. compute tag 𝑡 ← 𝐌𝐚𝐜𝑘 𝑚 ;

3. send message together with tag: (𝑚, 𝑡).

To receive an authenticated message (𝑚, 𝑡):

1. verify the pair: 𝑏 ← 𝐕𝐞𝐫𝑘 𝑚, 𝑡 ;

2. if 𝑏 = 1, accept the message; otherwise reject it.

Important observations:

• This process does not  “check that the 
message came from Alice!”

• All it does is check that the tag is consistent 
with the MAC defined by the shared key!

• In order for that to mean “the message came 
from Alice”, the MAC function needs to have 
some special properties.

• It needs to be unpredictable: the only way to 
“predict” tags is to have Alice’s key!



MESSAGE AUTHENTICATION CODES

Formal definition.

Canonical verification.

If 𝐌𝐚𝐜𝑘 is a deterministic algorithm…

Then there’s an optimal way to verify:

1. On input (𝑚, 𝑡), re-compute the tag 𝑡′ = 𝐌𝐚𝐜𝑘(𝑚);

2. If 𝑡 = 𝑡′, accept (output 1); otherwise reject (output 0).

So then we can just think about a MAC as a pair (𝐊𝐞𝐲𝐆𝐞𝐧, 𝐌𝐚𝐜).

Definition. A message authentication code (MAC) is a triple of PPT algorithms:

• (key generation) 𝐊𝐞𝐲𝐆𝐞𝐧: on input 1𝑛, outputs a key 𝑘 ∈ 0,1 𝑛;
• (tag generation) 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 0,1 ∗, outputs a tag 𝐌𝐚𝐜𝑘(𝑚);
• (verification) 𝐕𝐞𝐫: on input a key 𝑘 and a message-tag pair (𝑚, 𝑡), outputs 1 (valid) or 0 (invalid);

satisfying correctness: for all 𝑘 and all 𝑚, 𝐕𝐞𝐫𝑘 𝑚,𝐌𝐚𝐜𝑘 𝑚 = 1.



SECURE AUTHENTICATION

How to define security for MACs?

Unforgeability.

1. it should be impossible to predict tags, for any message

2. this should remain true even if adversary sees some valid (message, tag) pairs!

Why the latter?

• second point above sounds a bit like CPA from secrecy;

• but we had schemes where we didn’t care about CPA. Why have it right away?

• new: even if we send only a single transmission, adversary can read it, and then replace it!

• so we have to account for that.

As it turns out, we can for free get a little more: we can let adversary pick the message.

Alice Bob
Eve



UNFORGEABILITY

How to define security for MACs? Unforgeability.

Let’s use a game: MacForge Π, 𝑛 , where Π is a MAC and 𝑛 the security parameter.

1. A key is sampled: 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧(1n) ;

2. Adversary 𝑨 is given oracle access to 𝐌𝐚𝐜𝑘;

3. 𝑨 outputs a pair (𝑚, 𝑡); set 𝑏 = 𝐕𝐞𝐫𝑘 𝑚, 𝑡 ;

We say 𝑨 wins the experiment if:

• 𝑏 = 1 (valid),  and

• 𝑚 is not in the set of queries 𝑨 made to the oracle.

The latter condition is to prevent trivial “replay” attacks.

(In the real world, replay attacks are an actual problem, and one also needs to deal with them.)

𝑨

𝐌𝐚𝐜𝑘

(𝑚, 𝑡)
𝐕𝐞𝐫𝑘 𝑏



UNFORGEABILITY

How to define security for MACs? Unforgeability.

Let’s use a game: MacForge Π, 𝑛 , where Π is a MAC and 𝑛 the security parameter.

1. A key is sampled: 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧(1n) ;

2. Adversary 𝑨 is given oracle access to 𝐌𝐚𝐜𝑘;

3. 𝑨 outputs a pair (𝑚, 𝑡); set 𝑏 = 𝐕𝐞𝐫𝑘 𝑚, 𝑡 ;

We say 𝑨 wins the experiment if:

• 𝑏 = 1 (valid),  and

• 𝑚 is not in the set of queries 𝑨 made to the oracle.

𝑨

𝐌𝐚𝐜𝑘

(𝑚, 𝑡)
𝐕𝐞𝐫𝑘 𝑏

Definition. A message authentication code Π is existentially unforgeable under chosen message 
attack (EUF-CMA) if, for every PPT adversary 𝑨,

Pr 𝑨 wins MacForge Π, 𝑛 ≤ negl 𝑛 .



UNFORGEABILITY

EUF: existential unforgeability

• “existential” means that forging on any fresh message…

• … is considered a break.

• could define weaker notion: (i.) 𝑨 declares message 𝑚, (ii.) 𝑨 receives oracle, (iii.) 𝑨 forges a tag for 𝑚.

• but we want stronger security, and (as we will see) we can achieve it.

CMA: chosen message attack

• indicates that adversary has oracle access to 𝐌𝐚𝐜𝑘 and can query it on messages of their choice;

• can limit number of queries to some number 𝑞: we call that 𝑞-EUF-CMA.

• clearly, EUF-CMA implies 𝑞-EUF-CMA for all polynomials 𝑞.

Definition. A message authentication code Π is existentially unforgeable under chosen message 
attack (EUF-CMA) if, for every PPT adversary 𝑨,

Pr 𝑨 wins MacForge Π, 𝑛 ≤ negl 𝑛 .

𝑨

𝐌𝐚𝐜𝑘

(𝑚, 𝑡)
𝐕𝐞𝐫𝑘 𝑏



CONSTRUCTING SECURE MACs

How do we construct secure MACs?

Let’s consider 1-EUF-CMA : adversary gets only one (𝑚, 𝑡) pair.

First, let’s see why OTP is a bad MAC, even for this.

Set 𝑓𝑘 𝑚 = 𝑚⊕ 𝑘.

Good: for any 𝑚, and all 𝑡,  Pr
𝑘
𝑓𝑘 𝑚 = 𝑡 = 1/2𝑛 .

… in other words, for a single message, the tag distribution is uniform!

Bad: if you know (𝑚, 𝑓𝑘 𝑚 ), it’s trivial to determine 𝑘 = 𝑚⊕ 𝑓𝑘 𝑚 …

… and then you know 𝑓𝑘 𝑚′ for all 𝑚′!

… i.e., the tag distribution becomes deterministic!

Trivial attack: use your one 𝐌𝐚𝐜𝑘 query to learn 𝑘, then forge wherever you want.



CONSTRUCTING SECURE MACs

How do we construct secure MACs?

Let’s consider 1-EUF-CMA : adversary gets only one (𝑚, 𝑡) pair.

• what we want: for any pair of messages (𝑚,𝑚′), the tag distribution is uniform.

• that way, adversary can query however they want (i.e., on any 𝑚)…

• … and that should tell them nothing about the tag for any other 𝑚′.

Formally:

Suppose we had one of these.

Can we construct a secure (one-time) MAC?

Definition. A keyed function family 𝑓: 𝐾 × 𝑀 → 𝑇 is pairwise independent if, for every 𝑚 ≠ 𝑚′ in 𝑀
and all 𝑡, 𝑡′ in 𝑇, we have

Pr
𝑘∈𝐾

𝑓𝑘 𝑚 = 𝑡 ∧ 𝑓𝑘 𝑚′ = 𝑡′ =
1

𝑇 2



CONSTRUCTING SECURE MACs

Proof.

• info-theoretic setting: 𝑨 is all-powerful

• can assume 𝑨 is deterministic (if not, there exists a stronger 𝑨′ which runs 𝑨 with best possible coins.)

• the initial query message 𝑚 is thus fixed;

• and the claimed forgery 𝑚′ is a fixed function 𝑨(𝑡) of the query response 𝑡. 

Pr 𝑨 wins = σ𝑡∈TPr[ 𝑨 wins ∧ 𝑓𝑘 𝑚 = 𝑡]

= σ𝑡∈TPr[𝑓𝑘 𝑚′ = 𝑨 𝑡 ∧ 𝑓𝑘 𝑚 = 𝑡]

= σ𝑡∈T
1

𝑇 2 =
1

𝑇
.

We used pairwise independence in line 2 → line 3.

Construction (Carter-Wegman). Let 𝑓: 𝐾 ×𝑀 → 𝑇 be a pairwise-independent function family. Define a 
MAC (with canonical verification) as follows:
• 𝐊𝐞𝐲𝐆𝐞𝐧: output uniformly random 𝑘 ← 𝐾;
• 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 𝑀, output tag 𝑓𝑘(𝑚).

Theorem. The Carter-Wegman MAC with a pairwise-independent function is 1-EUF-CMA 
against arbitrary adversaries.

𝑨

𝐌𝐚𝐜𝑘

(𝑚′, 𝑡′)
𝐕𝐞𝐫𝑘 𝑏

𝑚𝑡



CONSTRUCTING SECURE MACs

This is great and all…

but do pairwise-independent functions even exist?

What do they need, intuitively?

• even if you know an input-output pair 𝑥, 𝑓 𝑥 …

• you don’t know anything about any other pair;

• moreover, the values are random.

Think about random lines!

𝑥, 𝑓 𝑥

𝑥′, 𝑓 𝑥′



CONSTRUCTING SECURE MACs

Pairwise-independent functions: random lines in ℤ𝑝.

• Input and output spaces: ℤ𝑝 = {0,1,2, … , 𝑝 − 1} for a prime 𝑝.

• Key space: ℤ𝑝× ℤ𝑝.

• All arithmetic will be modulo 𝑝.

• Recall: since 𝑝 is a prime, we have multiplicative inverses (and can easily compute them.)

For any pair 𝑎, 𝑏 ∈ ℤ𝑝× ℤ𝑝, define
𝑓𝑎,𝑏 𝑥 ≔ 𝑎 ⋅ 𝑥 + 𝑏

Prove pairwise independence:

• given: 𝑥 ≠ 𝑥′ and arbitrary 𝑦, 𝑦′ in ℤ𝑝;

• easy: let 𝑎 = 𝑦 − 𝑦′ ⋅ 𝑥 − 𝑥′ −1 and 𝑏 = 𝑦 − 𝑎 ⋅ 𝑥;

• it follows that there is a unique line 𝑓𝑎,𝑏 through the given points;

• if we pick a uniformly random key 𝑎, 𝑏 ∈ ℤ𝑝× ℤ𝑝…

• … the probability of sampling that unique line is 1/𝑝2.

𝑥, 𝑓 𝑥

𝑥′, 𝑓 𝑥′



CONSTRUCTING SECURE MACs

Great!

• we constructed a one-time secure MAC;

• we can use it to securely authenticate one message!

• if we used it more than once, forging becomes possible (think about the line.)

Can we get more?

• Sure! let’s take random polynomials over ℤ𝑝;

• Keys get a bit bigger, but now you need degree-many points to learn the function;

• There’s plenty to check…

• … but this does give us information-theoretically secure 𝑞-time MACs for any fixed 𝑞.

𝑥, 𝑓 𝑥

𝑥′, 𝑓 𝑥′



CONSTRUCTING SECURE MACs

Problem:

What if I don’t know in advance how many messages I want to authenticate?

• random polynomials don’t work;

• degree is fixed at key generation time;

• so if adversary (or honest party) authenticates more than degree-many messages…

• … the polynomial is now completely known!

What do we need?

• a function for computing tags, which is unpredictable…

• which remains unpredictable on any input…

• … regardless of how many times it has been used previously!

Where have we seen this before?



SIMPLE PRF MAC

Notes.

• messages are of fixed length;

• tags are of length ℓ 𝑛 ; we can pick this however we want (by selecting the right PRF)…

• … but careful: recall trivial tag-guessing attack, which succeeds with probability 2−ℓ 𝑛 .

Proof.

• similar to IND-CPA proof:

1. show that a scheme with a perfectly random function is statistically unforgeable;

2. then show that a forger for the PRF MAC would imply a distinguisher for the PRF.

Construction (PRF MAC). Let 𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ be a PRF. Define a MAC 
(with canonical verification) as follows:
• 𝐊𝐞𝐲𝐆𝐞𝐧: output uniformly random 𝑘 ← 0,1 𝑛;
• 𝐌𝐚𝐜: on input a key 𝑘 and message 𝑚 ∈ 0,1 𝑚, output tag 𝑭𝑘(𝑚).


