
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (slides, reading);

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there, assignments will be as well.

Gradescope: active, access through ELMS.

Check these setups asap, and let me know if you run into issues!

TAs (Our spot: shared open area across from IRB 5234)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (Iribe);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (Iribe);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL, starting Feb 4)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL, starting Feb 6)

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/


FIRST HOMEWORK

First homework

• will be posted tonight on ELMS; 

• due in one week (11:59pm Thursday February 13th.)

Submission:

• through Gradescope (accessed through ELMS?)

• soon: do a “trial submit” to make sure the system works and you know how to use it;

• replace it with your solutions before the deadline.

Do this ASAP:

• read the problem set completely;

• spend a few minutes thinking about each problem.

This will help you gauge how much time you need to allocate, and how much help you might need.



HOMEWORK RULES AND GUIDELINES

Rules

• collaboration ok, solutions must be written up by yourself, in your own words;

• late homeworks will not be accepted (no exceptions, but lowest grade will be dropped.)

Explanations and proofs

• correct answers with no explanation will get a zero score;

• explain your ideas clearly and completely;

• write in complete sentences, use correct and complete mathematical notation (as in lectures and book);

• proofs need to be rigorous, clear, and complete (consider all cases, prove counterexamples, etc.)

Suggestions

• work on your own at least some of the time for each assignment

• work in 25+ minute chunks of uninterrupted, distraction-free, device-free time

• develop intuition: try lots of examples, ask yourself questions, “play” with the concepts



RECAP: EXPANDING OUR MODEL

So far…

• our model still grants adversary very little power;

• they are only a passive observer;

• in real world, they can do much more!

For example: they can interrogate systems.

• try to connect to some authorized system;

• guess passwords and see what happens;

• send transmissions and see if they decrypt to something;

• use real world power over parties to get them to send encrypted messages.

How do we capture things like this in our framework? Adversaries with oracles.

Alice Bob
Eve

𝐄𝐧𝐜𝑘

𝑘 𝑘



RECAP: PSEUDORANDOM FUNCTIONS

A more powerful primitive: pseudorandom functions.

It’s a PT-computable family:

𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ

Given a key 𝑘 ∈ 0,1 𝑛, we get a function like this: 𝑭𝑘: 0,1
𝑚 → 0,1 ℓ.

Trivial: construct PRG from PRF.

𝑭𝑘

𝑘 ← 0,1 𝑛

𝑥1 pseudorandom
𝑥2 pseudorandom
𝑥3 pseudorandom… …

key:
- choose uniformly at random
- keep secret!

input: choose any way you want output: will look pseudorandom



RECAP: PRFs from PRGs

Can you build a PRF from a PRG?

Let 𝑮: 0,1 n → 0,1 2𝑛 be a PRG, and define:

𝑮0: 0,1
n → 0,1 𝑛 by  𝑮0 𝑥 = 𝑮 𝑥 ȁ1

𝑛

𝑮1: 0,1
n → 0,1 𝑛 by  𝑮0 𝑥 = 𝑮 𝑥 ȁ𝑛+1

2𝑛

𝑭𝑘 𝑥 = 𝐺𝑥𝑛(𝐺𝑥𝑛(⋯ (𝐺𝑥1(𝐺𝑥0 𝑘 )⋯ )

𝑘

𝑮

Example:
• suppose n=3
• compute 𝑭𝑘(101).

𝑥0 = 1

𝑥1 = 0

𝑮

𝑮

𝑥2 = 1

“GGM PRF”



RECAP: PRF ENCRYPTION

What’s a PRF good for?

Lots of things! Like really powerful encryption:

Construction (PRF encryption). Let 𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ be a PRF. Define a scheme:

• 𝐊𝐞𝐲𝐆𝐞𝐧: sample a PRF key 𝑘 ← 0,1 𝑛;
• 𝐄𝐧𝐜: on input a message 𝑚 ∈ 0,1 ℓ, sample 𝑟 ← 0,1 𝑚 and output (𝑟, 𝑭𝑘 𝑟 ⊕𝑚);
• 𝐃𝐞𝐜: on input a ciphertext (𝑟, 𝑐), output 𝑐 ⊕ 𝑭𝑘 𝑟 .

𝑭𝑘

0,1 ℓ ⨁ 0,1 ℓplaintext

ciphertext

One-time pad

𝑘

0,1 𝑛 ⨁ 0,1 𝑛

plaintext ciphertext

0,1 𝑚randomness 0,1 𝑚 Some properties
• at its core, there’s still OTP
• can send arbitrarily-many messages!
• encryption is now a randomized algorithm



RECAP: IND-CPA

Indistinguishability under Chosen Plaintext Attack.

INDCPA experiment:

1. Sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

2. Give adversary oracle access to 𝐄𝐧𝐜𝑘;

3. 𝑨𝐄𝐧𝐜𝑘 outputs two messages 𝑚0, 𝑚1 with 𝑚0 = 𝑚1 ;

4. Sample a coin 𝑏 ← 0,1 ; give 𝑨 ciphertext 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

5. 𝑨𝐄𝐧𝐜𝑘outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is IND-CPA if, for every PPT adversary 𝑨,

Pr 𝑨 wins INDCPA experiment ≤
1

2
+ negl 𝑛 .

𝑚0

𝑚1
𝑨

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝑐

𝑐𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑨 𝑏′

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝑏 = 0

𝑏 = 1



WHAT DOES IT MEAN?

Indistinguishability under Chosen Plaintext Attack.

• this is the “gold standard” : encryption schemes used on the Internet must satisfy it;

• but why? What does IND-CPA mean?

• IND-CPA experiment: just one possible interaction between an attacker and the scheme;

• what about other ways that “attacker vs scheme” could play out in the real world?

• why don’t we have to worry about all those too?

Answer: semantic security.

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is IND-CPA if, for every PPT adversary 𝑨,

Pr 𝑨 wins INDCPA experiment ≤
1

2
+ negl 𝑛 .



SEMANTIC SECURITY

Recall: “semantic security” is a meaningful, intuitive notion;

It says something like this:

“observing the ciphertext doesn’t help the adversary learn anything new about the plaintext.”

A bit more carefully:

“no matter what the adversary already knows about the plaintext…

… observing the ciphertext doesn’t help him learn anything more.”

Things to capture formally:

• existing knowledge;

• new knowledge;

• “doesn’t help”.



SEMANTIC SECURITY

A bit more formally. Pick some scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 .

An attacker 𝑨 says they can break it, like this:

1. A plaintext 𝑚 is generated somehow;

2. 𝑨 receives some info ℎ(𝑚) about 𝑚;

3. 𝑨 then observes the ciphertext in transit;

4. Finally, 𝑨 figures out some info 𝑓(𝑚) about 𝑚.

Security will mean that:

There exists a “simulator” 𝑺 such that:

1. If the plaintext 𝑚 is generated in the same way;

2. and 𝑺 receives some info ℎ(𝑚) about 𝑚;

3. then 𝑺 also figures out the info 𝑓(𝑚) about 𝑚.

𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝑺
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩



SEMANTIC SECURITY

Formally:

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is semantically secure if, for every PPT 
algorithm 𝑨 (“adversary”) there exists a PPT algorithm 𝑺 (“simulator”) such that the following holds.

𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝑺
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

vs



SEMANTIC SECURITY

Formally:

𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝑺
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is semantically secure if, for every PPT 
algorithm 𝑨 (“adversary”) there exists a PPT algorithm 𝑺 (“simulator”) such that the following holds.

For every PPT algorithm 𝐒𝐚𝐦𝐩 and every pair of poly-time computable functions ℎ and 𝑓,

Pr 𝑨 ℎ 𝑚 , 𝐄𝐧𝐜𝑘 𝑚 = 𝑓(𝑚) − Pr 𝑺 ℎ 𝑚 = 𝑓(𝑚) ≤ negl 𝑛 .
𝑚 ← 𝐒𝐚𝐦𝐩 𝑚 ← 𝐒𝐚𝐦𝐩

vs



SEMANTIC SECURITY under CHOSEN PLAINTEXT ATTACK

Formally:

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is SEM-CPA secure if, for every PPT 
algorithm 𝑨 (“adversary”) there exists a PPT algorithm 𝑺 (“simulator”) such that the following holds.

For every PPT algorithm 𝐒𝐚𝐦𝐩 and every pair of poly-time computable functions ℎ and 𝑓,

Pr 𝑨𝐄𝐧𝐜𝑘 ℎ 𝑚 , 𝐄𝐧𝐜𝑘 𝑚 = 𝑓(𝑚) − Pr 𝑺𝐄𝐧𝐜𝑘 ℎ 𝑚 = 𝑓(𝑚) ≤ negl 𝑛 .
𝑚 ← 𝐒𝐚𝐦𝐩 𝑚 ← 𝐒𝐚𝐦𝐩

vs𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘

𝑺
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘



SEM-CPA vs IND-CPA

This is really messy. IND-CPA is way simpler to work with.

Totally awesome:

• we get the real, meaningful security strength promised by semantic security…

• … but we can use the much simpler and cleaner indistinguishability definition.

• (for example, when doing proofs!)

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is SEM-CPA if, for every PPT algorithm 𝑨
(“adversary”) there exists a PPT algorithm 𝑺 (“simulator”) such that the following holds.

For every PPT algorithm 𝐒𝐚𝐦𝐩 and every pair of poly-time computable functions ℎ and 𝑓,

Pr 𝑨𝐄𝐧𝐜𝑘 ℎ 𝑚 , 𝐄𝐧𝐜𝑘 𝑚 = 𝑓(𝑚) − Pr 𝑺𝐄𝐧𝐜𝑘 ℎ 𝑚 = 𝑓(𝑚) ≤ negl 𝑛 .
𝑚 ← 𝐒𝐚𝐦𝐩 𝑚 ← 𝐒𝐚𝐦𝐩

Theorem. IND-CPA ⟺ SEM-CPA.



SEM-CPA = IND-CPA

How to prove something like this?

Break it up into:

1. IND-CPA ⇒ SEM-CPA

2. SEM-CPA ⇒ IND-CPA .

• claim: #2 is the less interesting direction;

• we want to know that, when we use IND-CPA, this is “good enough”;

• intuitively, SEM captures a wide range of “adversary vs scheme” experiments…

• … and the IND experiment is just one special case;

• so #2 is also not very surprising.

So let’s talk about #1.

Theorem. IND-CPA ⟺ SEM-CPA.



SEM-CPA = IND-CPA

Claim: IND-CPA ⇒ SEM-CPA.

• suppose a scheme is IND-CPA;

• let’s prove that it must also be SEM-CPA;

• direct approach: show how to, given any adversary 𝑨, construct a simulator 𝑺.

In pictures:

We have to turn this:

𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘

𝑺
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘

Into this:



SEM-CPA = IND-CPA

Claim: IND-CPA ⇒ SEM-CPA.

• suppose a scheme is IND-CPA;

• let’s prove that it must also be SEM-CPA;

• direct approach: show how to, given any adversary 𝑨, construct a simulator 𝑺.

In pictures:

We’re given this:

𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘



𝑺

SEM-CPA = IND-CPA

Claim: IND-CPA ⇒ SEM-CPA.

• suppose a scheme is IND-CPA;

• let’s prove that it must also be SEM-CPA;

• direct approach: show how to, given any adversary 𝑨, construct a simulator 𝑺.

In pictures:

We’re given this:

𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘



𝑺

SEM-CPA = IND-CPA

Claim: IND-CPA ⇒ SEM-CPA.

• suppose a scheme is IND-CPA;

• let’s prove that it must also be SEM-CPA;

• direct approach: show how to, given any adversary 𝑨, construct a simulator 𝑺.

In pictures:

We’re given this:

𝑨
ℎ(𝑚)

𝐄𝐧𝐜𝑘(𝑚)
𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘(0
𝑚 )

By IND-CPA!



SEM-CPA = IND-CPA

Claim: IND-CPA ⇒ SEM-CPA.

The reduction:

• don’t confuse the reduction with the proof!

• crucial step missing: why does IND-CPA allow us to do the ciphertext replacement?

• one way to do this formally: show that, if 𝑨 can tell the difference,

• i.e., if 𝑺 and 𝑨 have noticeably different success probabilities…

• … then you can turn 𝑨 into a winning IND-CPA adversary.

𝑺

𝑨
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘(0
𝑚 )



SEM-CPA = IND-CPA

Claim: IND-CPA ⇒ SEM-CPA.

The reduction:

• for that, you can follow your nose:

• the challenge plaintexts should be 𝑚 and 0 𝑚 ;

• the post-challenge algorithm gets ℎ(𝑚), and then checks if the output is indeed 𝑓 𝑚 ;

• if YES, guess: challenge was 𝑚. If NO, guess: challenge was 0 𝑚 ;

Plenty of details left to check, but you get the idea.

𝑺

𝑨
ℎ(𝑚)

𝑓(𝑚)

𝑚 ← 𝐒𝐚𝐦𝐩

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘(0
𝑚 )



SEM-CPA = IND-CPA

Ok, so now we have:

Recap why this is awesome:

• we can work with our simple, convenient security definition (IND-CPA)…

• … and know that we are capturing the full power of intuitive, meaningful security (SEM-CPA).

Actually, IND-CPA is even more fantastic than that! 

• I tricked you…

• the challenge in IND-CPA only has one ciphertext in it;

• what if you want to send lots of messages?

• this is even more apparent when you look at SEM-CPA!

Theorem. IND-CPA ⟺ SEM-CPA.



IND-CPA-mult (oh no…)

Indistinguishability under Chosen Plaintext Attack.

INDCPA experiment:

1. Sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

2. Give adversary oracle access to 𝐄𝐧𝐜𝑘;

3. 𝑨𝐄𝐧𝐜𝑘 outputs two messages 𝑚0, 𝑚1 with 𝑚0 = 𝑚1 ;

4. Sample a coin 𝑏 ← 0,1 ; give 𝑨 ciphertext 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

5. 𝑨𝐄𝐧𝐜𝑘outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is IND-CPA if, for every PPT adversary 𝑨,

Pr 𝑨 wins INDCPA experiment ≤
1

2
+ negl 𝑛 .

𝑚0

𝑚1
𝑨

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝑐

𝑐𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑨 𝑏′

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝑏 = 0

𝑏 = 1



IND-CPA-mult (oh no…)

INDCPA-mult experiment:

1. Sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

2. Give adversary oracle access to 𝐄𝐧𝐜𝑘;

3. 𝑨𝐄𝐧𝐜𝑘 outputs two message lists 𝑚0, 𝑚1;

4. Sample a coin 𝑏 ← 0,1 ;

give 𝑨 ciphertexts ര𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

5. 𝑨𝐄𝐧𝐜𝑘outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is IND-CPA-mult if, for every PPT adversary 𝑨,

Pr 𝑨 wins INDCPA−mult experiment ≤
1

2
+ negl 𝑛 .

𝑚0

𝑚1
𝑨

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

ര𝑐

ര𝑐𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑨 𝑏′

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝑏 = 0

𝑏 = 1



IND-CPA IS GREAT

Easy theorem:

Yet another reason to love IND-CPA.

• ok, let’s (finally) do something.

• let’s show the PRF scheme is IND-CPA.

• by what we just discussed, this will mean that the PRF scheme is also SEM-CPA and IND-CPA-mult.

Theorem. IND-CPA ⟹ IND-CPA-mult.



REMINDER: PRF ENCRYPTION

What’s the proof idea?

1. by the PRF property, I should be able to replace 𝑭𝑘 above with a totally random function 𝑹…

… without the adversary noticing the difference.

2. but after that replacement, look at how the scheme works:

• for each message 𝑚…

• … we pick a random string of the same length as 𝑚 (specifically, 𝑹(𝑟));

• and we use it to one-time pad 𝑚!

3. this is perfectly secret!

Construction (PRF encryption). Let 𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ be a PRF. Define a scheme:

• 𝐊𝐞𝐲𝐆𝐞𝐧: sample a PRF key 𝑘 ← 0,1 𝑛;
• 𝐄𝐧𝐜: on input a message 𝑚 ∈ 0,1 ℓ, sample 𝑟 ← 0,1 𝑚 and output (𝑟, 𝑭𝑘 𝑟 ⊕𝑚);
• 𝐃𝐞𝐜: on input a ciphertext (𝑟, 𝑐), output 𝑐 ⊕ 𝑭𝑘 𝑟 .

Theorem. The PRF scheme is IND-CPA.



PRF SCHEME IS IND-CPA

So we need to prove two things:

1. We can replace 𝑭𝑘: 0,1
𝑚 → 0,1 ℓ in the PRF scheme with uniformly random 𝑹: 0,1 𝑚 → 0,1 ℓ;

2. The PRF scheme with totally random 𝑹 is IND-CPA.

Important caveats:

• this “𝑹-scheme” is not an efficient scheme;

• indeed, it takes ℓ ⋅ 2𝑚 space to store 𝑹!

• but this is okay: this scheme is only a proof device. It does not need to be realizable.

Also:

• the “𝑹-scheme” isn’t really a huge one-time pad…

• … if we happen to sample the same 𝑟 twice, we will end up reusing the OTP key (bad!)

• but this is ok too: it can only happen with exponentially small probability.

Theorem. The PRF scheme is IND-CPA.

𝑹

ℓ bits

2𝑚 entries



PRF SCHEME IS IND-CPA

Think: “gee, if 𝑨 really can break Π𝐏𝐑𝐅, then they can also break Π𝑹𝑭!”

(and then we’ll later show this is impossible as Π𝑹𝑭 is basically OTP)

PRF scheme Π𝐏𝐑𝐅:
• 𝐊𝐞𝐲𝐆𝐞𝐧: sample a PRF key 𝑘 ← 0,1 𝑛;
• 𝐄𝐧𝐜: on input a message 𝑚 ∈ 0,1 ℓ, sample 𝑟 ← 0,1 𝑚 and output (𝑟, 𝑭𝑘 𝑟 ⊕𝑚);
• 𝐃𝐞𝐜: on input a ciphertext (𝑟, 𝑐), output 𝑐 ⊕ 𝑭𝑘 𝑟 .

RF scheme Π𝐑𝐅
• 𝐊𝐞𝐲𝐆𝐞𝐧: sample a uniformly random function 𝑹: 0,1 𝑚 → {0,1}^ℓ.
• 𝐄𝐧𝐜: on input a message 𝑚 ∈ 0,1 ℓ, sample 𝑟 ← 0,1 𝑚 and output (𝑟, 𝑹 𝑟 ⊕𝑚);
• 𝐃𝐞𝐜: on input a ciphertext (𝑟, 𝑐), output 𝑐 ⊕ 𝑹 𝑟 .

Claim 1. For every PPT 𝑨,
Pr[𝑨 wins INDCPA experiment vs Π𝐏𝐑𝐅 ] − Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤ negl 𝑛 .



PRF SCHEME IS IND-CPA

Strategy: if claim is false, then we can build a distinguisher between PRF and RF (& violate PRF property!)

What’s the distinguisher? It’s a simulation of the INDCPA experiment vs 𝑨!

Claim 1. For every PPT 𝑨,
Pr[𝑨 wins INDCPA experiment vs Π𝐏𝐑𝐅 ] − Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤ negl 𝑛 .

𝑫
𝑮

𝑧 ∈ {0,1}.

𝑨

𝐄𝐧𝐜𝑘



𝑫
𝑮

PRF SCHEME IS IND-CPA

Strategy: if claim is false, then we can build a distinguisher between PRF and RF (& violate PRF property!)

What’s the distinguisher? It’s a simulation of the INDCPA experiment vs 𝑨!

Claim 1. For every PPT 𝑨,
Pr[𝑨 wins INDCPA experiment vs Π𝐏𝐑𝐅 ] − Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤ negl 𝑛 .

𝑨

simulate
Enc

𝑧 ∈ {0,1}.

simulate Enc:
• on input 𝑚;
• sample 𝑟 ← 0,1 𝑚

• query: 𝑠 = 𝑮(𝑟);
• output (𝑟,𝑚 ⊕ 𝑠).



𝑫
𝑮

PRF SCHEME IS IND-CPA

Strategy: if claim is false, then we can build a distinguisher between PRF and RF (& violate PRF property!)

What’s the distinguisher? It’s a simulation of the INDCPA experiment vs 𝑨!

Claim 1. For every PPT 𝑨,
Pr[𝑨 wins INDCPA experiment vs Π𝐏𝐑𝐅 ] − Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤ negl 𝑛 .

𝑨

simulate
Enc

𝑧 ∈ {0,1}.

simulate Enc:
• on input 𝑚;
• sample 𝑟 ← 0,1 𝑚

• query: 𝑠 = 𝑮(𝑟);
• output (𝑟,𝑚 ⊕ 𝑠).

𝑚0, 𝑚1

Generate 𝑏 ← 0,1
Compute 𝑐 = 𝐄𝐧𝐜(𝑚𝑏)

𝑐

𝑏′
If 𝑏 = 𝑏′, output 1;
Otherwise output 0. 𝑧 ∈ {0,1}.



PRF SCHEME IS IND-CPA

Strategy: build a distinguisher between PRF and RF.

Check:

• If 𝑮 = 𝑭𝑘 for 𝑘 ← 0,1 𝑛, 𝑫 correctly simulates the INDCPA experiment vs Π𝐏𝐑𝐅…

• … so in that case, Pr[𝒛 = 1] = Pr[𝑨 wins vs Π𝐏𝐑𝐅].

• If 𝑮 = 𝑹 for 𝑹 ← {functions from 0,1 𝑚 to 0,1 ℓ}, 𝑫 correctly simulates the INDCPA experiment vs Π𝐑𝐅;

• … so in that case, Pr[𝒛 = 1] = Pr[𝑨 wins vs Π𝐏𝐑].

It follows that the distinguishing advantage of 𝑫 is 

Pr 𝑫𝑭𝑘 = 1 − Pr[𝑫𝑹 = 1] = Pr 𝑨 wins vs Π𝐏𝐑𝐅 − Pr[𝑨 wins vs Π𝐑𝐅]

which must be negligible by PRF property. 

Claim 1. For every PPT 𝑨,
Pr[𝑨 wins INDCPA experiment vs Π𝐏𝐑𝐅 ] − Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤ negl 𝑛 .



PRF SCHEME IS IND-CPA

Strategy?

• consider a run of the INDCPA experiment:

• it involves a polynomial number 𝑝(𝑛) of calls to 𝐄𝐧𝐜𝑹; each call queries 𝑹 at a random input 𝑟;

• one of these calls is the challenge; let’s call the random input for that 𝑟∗.

• Event 𝑬: for some 𝑟, 𝑟 = 𝑟∗.

• occurs with negligible probability: Pr 𝑬 ≤ 𝑝(𝑛)/2𝑚.

• so we can ignore it.

• Event ഥ𝑬: for all 𝑟, 𝑟 ≠ 𝑟∗.

• occurs with probability almost 1 (since Pr ഥ𝑬 = 1 − Pr 𝐸 )

• good for us: 𝑹(𝑟∗) is uniformly random and independent of rest of experiment…

• … which means the challenge was OTP-encrypted!

Claim 2. For every PPT 𝑨,

Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤
1

2
+ negl 𝑛 .



PRF SCHEME IS IND-CPA

Event ഥ𝑬: for all 𝑟, 𝑟 ≠ 𝑟∗.

• occurs with probability almost 1 (since Pr ഥ𝑬 = 1 − Pr 𝐸 )

• good for us: 𝑹(𝑟∗) is uniformly random and independent of rest of experiment…

• … which means the challenge was OTP-encrypted!

Claim 2. For every PPT 𝑨,

Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤
1

2
+ negl 𝑛 .

𝑚0

𝑨

𝐄𝐧𝐜

𝐄𝐧𝐜 𝑐
𝑨 𝑏′

𝐄𝐧𝐜

𝑚1

𝑠 ← 0,1 ℓ 𝑛 𝑠 = 𝑹(𝑟∗)

𝐎𝐓𝐏. 𝐄𝐧𝐜𝑠 Conclusion:

Pr 𝑨 winsȁഥ𝑬 = 1/2.



PRF SCHEME IS IND-CPA

Putting things together:

Pr[𝑨 wins] = Pr 𝑨 wins 𝑬 ⋅ Pr 𝑬 + Pr 𝑨 wins ȁ ഥ𝑬 ⋅ Pr ഥ𝑬

≤ 1 ⋅
𝑝 𝑛

2𝑚
+

1

2
⋅ 1 −

𝑝 𝑛

2𝑚

≤
1

2
+

𝑝 𝑛

2𝑚
−

𝑝 𝑛

2𝑚+1

≤
1

2
+ negl 𝑛 .

Claim 2. For every PPT 𝑨,

Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤
1

2
+ negl 𝑛 .



PRF SCHEME IS IND-CPA

Putting the two claims together:

Pr[𝑨 wins vs Π𝐏𝐑𝐅] ≤ ȁ Pr 𝑨 wins vs Π𝐑𝐅 ȁ + Pr[𝑨 wins vs Π𝐏𝐑𝐅 ] − Pr[𝑨 wins vs Π𝑹𝑭 ]

≤
1

2
+ negl 𝑛 + negl 𝑛 ≤

1

2
+ negl 𝑛 .

It follows that the PRF scheme is IND-CPA.

Claim 2. For every PPT 𝑨,

Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤
1

2
+ negl 𝑛 .

Claim 1. For every PPT 𝑨,
Pr[𝑨 wins INDCPA experiment vs Π𝐏𝐑𝐅 ] − Pr[𝑨 wins INDCPA experiment vs Π𝑹𝑭 ] ≤ negl 𝑛 .


