MATH/OMSC 456 :: UPDATED COLRSEINFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: /ntroduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (slides, reading);

Piazza: piazza.com/umd/spring2020/cmsc456
ELMS: active, slides and reading posted there, assignments will be as well.

Gradescope: active, access through ELMS.

Check these setups asap, and let me know if you run into issues!

TAs (Our spot: shared open area across from IRB 5234)

* Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (Iribe);

 Justin Hontz (jhontz@terpmail.umd.edu) Tpm-2pm MW (Iribe);

Additional help:

* Chen Bai (cbail@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL, starting Feb 4)

* Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL, starting Feb 6)


mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

ARSI HOVBAORK

First homework
 will be posted tonight on ELMS;
« duein one week (11:59pm Thursday February 13t%.)

Submission:
 through Gradescope (accessed through ELMS?)
« soon: do a “trial submit” to make sure the system works and you know how to use it;

* replace it with your solutions before the deadline.

Do this ASAP:
* read the problem set completely;
« spend a few minutes thinking about each problem.

This will help you gauge how much time you need to allocate, and how much help you might need.



HOVBAORK RULES AND GUDELINES

Rules
 collaboration ok, solutions must be written up by yourself, in your own words;

 |late homeworks will not be accepted (no exceptions, but lowest grade will be dropped.)

Explanations and proofs

 correct answers with no explanation will get a zero score;

 explain your ideas clearly and completely;

« write in complete sentences, use correct and complete mathematical notation (as in lectures and book);

« proofs need to be rigorous, clear, and complete (consider all cases, prove counterexamples, etc.)

Suggestions
« work on your own at least some of the time for each assignment
« work in 25+ minute chunks of uninterrupted, distraction-free, device-free time

« develop intuition: try lots of examples, ask yourself questions, “play” with the concepts



RECAP. EXPANIING OLR MOEH-

So far...
« our model still grants adversary very little power;
 they are only a passive observer;

* in real world, they can do much more!

For example: they can interrogate systems.

* try to connect to some authorized system;

* guess passwords and see what happens;
» send transmissions and see if they decrypt to something;

 use real world power over parties to get them to send encrypted messages.

How do we capture things like this in our framework? Adversaries with oracles.

Enc




RECAP. PSHLDORANDOM RLNCTIONS

A more powerful primitive: pseudorandom functions.

key:
- choose uniformly at random

It's a PT-computable family:  keep secret!

k< {0,1}"

X1—
Xog——

X3——

Fy

— pseudorandom
— > pseudorandom
——  pseudorandom

F-{01}" x {0,1)™ > {01}

input: choose any way you want

output: will look pseudorandom

Given a key k € {0,1}", we get a function like this: Fj: {0,1}™ - {0,1}*.

Trivial: construct PRG from PREF.



RECAP. PRFs fromPRGs

Can you build a PRF from a PRG? e
Let G:{0,1}™ = {0,1}?" be a PRG, and define:

Go: {0,137 = (013" by Go(x) = G} } ——  Fp(x) = Gy, (G, (- (G, (Gy, (K)) -++)
G: (013" = (0,1 by Go(x) = G2,

k
Example: |
* suppose n=3 G
 compute F,(101).

A\ 4




RECAP. PRFBENCRYPTION

One-time pad

What'’s a PRF good for?

Lots of things! Like really powerful encryption:

— =

01" —— & —— {0,1}"

plaintext Ciphertext

Construction (PRF encryption). Let F: {0,1}" x {0,1}" - {0,1}¢ be a PRF. Define a scheme:

« KeyGen: sample a PRF key k < {0,1}";
« Enc: on input a message m € {0,1}¢, sample r « {0,1}™ and output (r, Fx(r) @ m);

« Dec: oninput a ciphertext (7, c), output ¢ @ Fy(r).

randomness  {0,1}™

- {0,1}™

plaintext {0,1}* >

{0)1}?

ciphertext

Some properties

at its core, there's still OTP
can send arbitrarily-many messages!
encryption is now a randomized algorithm



RECAP. IND-CPA

Indistinguishability under Chosen Plaintext Attack. Ency, b=0 Enc

INDCPA experiment:

1. Sample a key k < KeyGen; < b’
2. Give adversary oracle access to Ency;

3.  AE"k outputs two messages mg, my with |mg| = |my|;  ~TTTTTTTTTTTTTTTTTTTTTTTTTTmTTmTmsommm o mm e
4. Sample a coin b < {0,1}; give A ciphertext ¢ « Enc(my); . "
5. AE%koutputs a bit b

We say Awins if b = b/, Enc,, h=1 Enc;,

Definition. An encryption scheme (KeyGen, Enc, Dec) is IND-CPA if, for every PPT adversary A4,

1
Pr[A wins INDCPA experiment] < ) + negl(n).




VAHAT DOES IT MEAN?

Indistinguishability under Chosen Plaintext Attack.

Definition. An encryption scheme (KeyGen, Enc, Dec) is IND-CPA if, for every PPT adversary A4,
. . 1
Pr[A wins INDCPA experiment] < ) + negl(n).

* this is the “"gold standard” : encryption schemes used on the Internet must satisfy it;

* but why? What does IND-CPA mean?

» IND-CPA experiment: just one possible interaction between an attacker and the scheme;
« what about other ways that “attacker vs scheme” could play out in the real world?

» why don’t we have to worry about all those too?

Answer: semantic security.



SEMANTIC SHOLRITY

Recall: “semantic security” is a meaningful, intuitive notion;

It says something like this:

“observing the ciphertext doesn’t help the adversary learn anything new about the plaintext.”

A bit more carefully:

“no matter what the adversary already knows about the plaintext...

... observing the ciphertext doesn’t help him learn anything more.”

Things to capture formally:
* existing knowledge;
* new knowledge;

« “doesn’t help”.



SEMANTIC SHOLRITY

A bit more formally. Pick some scheme (KeyGen, Enc, Dec).

An attacker A says they can break it, like this:
1. Aplaintext m is generated somehow;

2. Areceives some info h(m) about m;

3. Athen observesthe ciphertext in transit;
4

Finally, A figures out some info f(m) about m.

Security will mean that:

There exists a “simulator” § such that:

1. I the plaintext m is generated in the same way;
2. and S receives some info h(m) about m;

3. then S also figures out the info f(m) about m.

h(m)

Enck (m)

h(m)

m < Samp

\ 4

\ 4

m < Samp

v

> f(m)

> f(m)



Formally:

m < Samp m < Samp

h(m)

VS h(m)

Enc;,(m)



Formally:

m < Samp m < Samp

h(m)

VS h(m)

Enc;,(m)



SEMANTIC SHOLRITY under CHOSENPLAINTEXT AITACK

Formally:

Definition. An encryption scheme (KeyGen, Enc, Dec) is SEM-CPA secure if, for every PPT
algorithm A ("adversary”) there exists a PPT algorithm § (“simulator”) such that the following holds.

For every PPT algorithm Samp and every pair of poly-time computable functions h and f,

|Pr[AE“ck(h(m), Enc,(m)) = f(m)] — Pr[SEnck(h(m)) = f(m)]| < negl(n).

m < Samp m < Samp
m < Samp m < Samp
h(m) > h(m) >
Enc, (m) A > f(m) VS S > f(m)
| 1 ‘|
Enc, Enc,




SEM-CPAvs IND-CPA

Definition. An encryption scheme (KeyGen, Enc, Dec) is SEM-CPA if, for every PPT algorithm 4
(“adversary”) there exists a PPT algorithm § (“simulator”) such that the following holds.

For every PPT algorithm Samp and every pair of poly-time computable functions h and f,

|Pr[AE“Ck(h(m), Enc,(m)) = f(m)] — Pr[SEan(h(m)) = f(m)]| < negl(n).

m « Samp m < Samp

This is really messy. IND-CPA is way simpler to work with.

Theorem. IND-CPA < SEM-CPA.

Totally awesome:
« we get the real, meaningful security strength promised by semantic security...

* ... but we can use the much simpler and cleaner indistinguishability definition.

* (for example, when doing proofs!)



SEM-CPA=IND-CPA

Theorem. IND-CPA < SEM-CPA.

How to prove something like this?
Break it up into:

1. IND-CPA = SEM-CPA

2. SEM-CPA = IND-CPA .

« claim: #2 is the less interesting direction;

* we want to know that, when we use IND-CPA, this is “"good enough”;

* intuitively, SEM captures a wide range of “adversary vs scheme” experiments...
 ...and the IND experiment is just one special case;

* so #2 is also not very surprising.

So let's talk about #1.



SEM-CPA=IND-CPA

Claim: IND-CPA = SEM-CPA.
« suppose a scheme is IND-CPA;
* let's prove that it must also be SEM-CPA;

« direct approach: show how to, given any adversary A4, construct a simulator §.

In pictures:

We have to turn this: Into this:

m < Samp m < Samp

h(m) h
A . f(m) ‘ o) S > f(m)

Enc,(m)
| 1 P 1

Enc, Enc,,

\ 4

\ 4

v




SEM-CPA=IND-CPA

Claim: IND-CPA = SEM-CPA.
« suppose a scheme is IND-CPA;
* let's prove that it must also be SEM-CPA;

« direct approach: show how to, given any adversary A4, construct a simulator §.

In pictures:

We're given this:

m < Samp

\ 4

h(m)

A > f(m)
i 1

Ean

Enc,(m)

A\ 4




Claim: IND-CPA = SEM-CPA.

* suppose a scheme is IND-CPA;

* let’s prove that it must also be SEM-CPA;

« direct approach: show how to, given any adversary A4, construct a simulator §.
In pictures:

We're given this:




SEM-CPA=IND-CPA

Claim: IND-CPA = SEM-CPA.

« suppose a scheme is IND-CPA;

* let's prove that it must also be SEM-CPA;

« direct approach: show how to, given any adversary A4, construct a simulator §.

In pictures:

We're given this:

m < Samp

h(m)

By IND-CPA!

EBng((Ht))

\ 4

v

l y
E|ncK

Enck

v

f(m)



SEM-CPA=IND-CPA

m < Samp

Claim: IND-CPA = SEM-CPA.
The reduction: S

h(m) -

A ~ f(m)
Enc, (0™ S
. : Enc,

« don't confuse the reduction with the proof!

crucial step missing: why does IND-CPA allow us to do the ciphertext replacement?

one way to do this formally: show that, if A can tell the difference,

i.e., if § and A have noticeably different success probabilities...

... then you can turn A into a winning IND-CPA adversary.



SEM-CPA=IND-CPA

m < Samp

Claim: IND-CPA = SEM-CPA.
The reduction: S

h(m) >

A
Enc, (0™ S
Enck

« for that, you can follow your nose:

« the challenge plaintexts should be m and 0/™/;

* the post-challenge algorithm gets h(m), and then checks if the output is indeed f(m);

« if YES, guess: challenge was m. If NO, guess: challenge was 0™!;

Plenty of details left to check, but you get the idea.

v

f(m)




SEM-CPA=IND-CPA

Ok, so now we have:

Theorem. IND-CPA < SEM-CPA.

Recap why this is awesome:
« we can work with our simple, convenient security definition (IND-CPA)...

* ... and know that we are capturing the full power of intuitive, meaningful security (SEM-CPA).

Actually, IND-CPA is even more fantastic than that!

* | tricked you...

* the challenge in IND-CPA only has one ciphertext in it;
« what if you want to send lots of messages?

* this is even more apparent when you look at SEM-CPA!



IND-CPA-nruit (ch no..)

Indistinguishability under Chosen Plaintext Attack. Ency, b=0 Enc

INDCPA experiment:

1. Sample a key k < KeyGen; < b’
2. Give adversary oracle access to Ency;

3.  AE"k outputs two messages mg, my with |mg| = |my|;  ~TTTTTTTTTTTTTTTTTTTTTTTTTTmTTmTmsommm o mm e
4. Sample a coin b < {0,1}; give A ciphertext ¢ « Enc(my); . "
5. AE%koutputs a bit b

We say Awins if b = b/, Enc,, h=1 Enc;,

Definition. An encryption scheme (KeyGen, Enc, Dec) is IND-CPA if, for every PPT adversary A4,

1
Pr[A wins INDCPA experiment] < ) + negl(n).




IND-CPA-nruit (ch no..)

Enck

INDCPA-mult experiment: Ency, b=0
1. Sample a key k < KeyGen,;

Give adversary oracle access to Ency;

2
3. AE"k outputs two message lists mg, my;
4

Sample a coin b « {0,1};
give A ciphertexts ¢ « Ency(mp);

5. AE"%koutputs a bit b

We say 4 wins if b = b'. Enc, b= 1 Enc,

Definition. An encryption scheme (KeyGen, Enc, Dec) is IND-CPA-mult if, for every PPT adversary 4,

1
Pr[A4 wins INDCPA-mult experiment] < > + negl(n).




IND-CPAIS GREAT

Easy theorem:

Theorem. IND-CPA = IND-CPA-mult.

Yet another reason to love IND-CPA.

« ok, let's (finally) do something.
* |et's show the PRF scheme is IND-CPA.
* by what we just discussed, this will mean that the PRF scheme is also SEM-CPA and IND-CPA-mult.



REMNIER PRFENCRYPTION

Construction (PRF encryption). Let F: {0,1}" x {0,1} = {0,1}¢ be a PRF. Define a scheme:

« KeyGen: sample a PRF key k « {0,1}";
« Enc: on input a message m € {0,1}¢, sample r « {0,1}™ and output (r, Fx(r) @ m);
« Dec: oninput a ciphertext (r, c), output ¢ @ Fy(r).

Theorem. The PRF scheme is IND-CPA.

What's the proof idea?

1. by the PRF property, | should be able to replace F; above with a totally random function R...
... without the adversary noticing the difference.

2. but after that replacement, look at how the scheme works:
 for each message m...
... we pick a random string of the same length as m (specifically, R(r));
* and we use it to one-time pad m!

3. this is perfectly secret!



PRF SC-EMVEIS IND-CPA

Theorem. The PRF scheme is IND-CPA.

So we need to prove two things: ¢ bits

1. We can replace Fj:{0,1}™ - {0,1} in the PRF scheme with uniformly random R: {0,1}™* - {0,1}; [ A ‘
2. The PRF scheme with totally random R is IND-CPA. _

Important caveats:

e this “R-scheme” is not an efficient scheme;

* indeed, it takes ¢ - 2™ space to store R!

 but this is okay: this scheme is only a proof device. It does not need to be realizable.
Also: 2™ entries A
* the "R-scheme” isn't really a huge one-time pad...

 ...if we happen to sample the same r twice, we will end up reusing the OTP key (bad!)

* but this is ok too: it can only happen with exponentially small probability.




PRFSCHEMVEIS IND-CPA

PRF scheme IlpgF:

« KeyGen: sample a PRF key k < {0,1}";

« Enc: on input a message m € {0,1}¢, sample r « {0,1}™ and output (r, Fx(r) @ m);
« Dec: on input a ciphertext (r, ¢), output ¢ @ F (7).

RF scheme Ilgxf

« KeyGen: sample a uniformly random function R:{0,1}" — {0,1}"?.

« Enc: on input a message m € {0,1}¢, sample r « {0,1}™ and output (r, R(r) @ m);
* Dec: on input a ciphertext (r, c), output c @ R(r).

Claim 1. For every PPT 4,
|Pr[A wins INDCPA experiment vs [lpgp | — Pr[4 wins INDCPA experiment vs [Igf | | < negl(n).

Think: “"gee, if A really can break Ipgg, then they can also break Igg!"

(and then we'll later show this is impossible as g is basically OTP)



Strategy: if claim is false, then we can build a distinguisher between PRF and RF (& violate PRF property!)
What's the distinguisher? It’s a simulation of the INDCPA experiment vs A!

Ean

G

z € {0,1}.




PRFSCHEMVEIS IND-CPA

Claim 1. For every PPT 4,
|Pr[A wins INDCPA experiment vs [lpgp | — Pr[4 wins INDCPA experiment vs [Igf | | < negl(n).

Strategy: if claim is false, then we can build a distinguisher between PRF and RF (& violate PRF property!)
What's the distinguisher? It's a simulation of the INDCPA experiment vs A!

D simulate \
G > ) Enc T

A

a
A

v

simulate Enc:
* oninputm;
 sampler « {0,1}™

* query:s = G(); — z € {0,1}.
« output (r,m @ s).



PRFSCHEMVEIS IND-CPA

Claim 1. For every PPT 4,
|Pr[A wins INDCPA experiment vs [lpgp | — Pr[4 wins INDCPA experiment vs [Igf | | < negl(n).

Strategy: if claim is false, then we can build a distinguisher between PRF and RF (& violate PRF property!)
What's the distinguisher? It's a simulation of the INDCPA experiment vs A!

D simulate \
G ) Enc \

»

a
A

v

mO) ml A

Generate b « {0,1}
Compute ¢ = Enc(my)

simulate Enc:
* oninputm;

 sampler « {0,1}™ , b ——
. output (r,m @ s). Otherwise output 0. Sk



PRF SC-EMVEIS IND-CPA

Claim 1. For every PPT 4,
|Pr[A wins INDCPA experiment vs [lpgp | — Pr[4 wins INDCPA experiment vs [Igf | | < negl(n).

Strategy: build a distinguisher between PRF and RF.

Check:
* It G = Fj for k < {0,1}", D correctly simulates the INDCPA experiment vs Ilpgp...

* ...sointhat case, Pr[z = 1] = Pr[4 wins vs [IpgF].

* If G = R for R « {functions from {0,1} to {0,1}*}, D correctly simulates the INDCPA experiment vs Ilgg;

* ...sointhat case, Pr[z = 1] = Pr[A wins vs Ilpg].

It follows that the distinguishing advantage of D is
|Pr[DFx = 1] — Pr[D® = 1]| = |Pr[A wins vs [lpgg] — Pr[A wins vs Igg]|

which must be negligible by PRF property.



PRF SC-EMVEIS IND-CPA

Claim 2. For every PPT 4,

1
|Pr[A wins INDCPA experiment vs [Igr | | < 5 + negl(n).

Strategy?
« consider a run of the INDCPA experiment:

* itinvolves a polynomial number p(n) of calls to Encg; each call queries R at a random input r;
« one of these calls is the challenge; let's call the random input for that r*.

« Event E: forsomer,r =1".
« occurs with negligible probability: Pr[E] < p(n)/2™.
* SO we can ignore it.
« EventE: forallr,r = r*.
* occurs with probability almost 1 (since Pr[E] = 1 — Pr[E])
« good for us: R(r*) is uniformly random and independent of rest of experiment...
* ... which means the challenge was OTP-encrypted!



PRF SC-BVEIS IND-CPA

Claim 2. For every PPT 4,

1
|Pr[A wins INDCPA experiment vs [Igr | | < 5 + negl(n).

Event E: forall r, r #r*.
* occurs with probability almost 1 (since Pr[E] = 1 — Pr[E])

« good for us: R(r*) is uniformly random and independent of rest of experiment...

* ... which means the challenge was OTP-encrypted!

s « {0,1}¥™) s=R@™)

Enc Enc

OTP.Enc, ¢

bl

Conclusion:

Pr[A wins|E] = 1/2.




Putting things together:

|Pr[A wins] | = Pr[A wins | E] - Pr[E] + Pr[A wins | E] - Pr[E]
(n) p(n)
e

2m

1 p(n) p(n)
S E + 2m+1
< % + egl(n)



PRF SC-EMVEIS IND-CPA

Claim 1. For every PPT 4,
|Pr[A wins INDCPA experiment vs [lpgp | — Pr[4 wins INDCPA experiment vs [Igf | | < negl(n).

Claim 2. For every PPT 4,
1
|Pr[A wins INDCPA experiment vs [Ipr | | < > + negl(n).

Putting the two claims together:

|Pr[A wins vs IIpgp] | < | Pr[A wins vs [Igg] | + | Pr[4 wins vs [Ipgp | — Pr[A wins vs IIgp | |

< % + negl(n) + negl(n) < % + negl(n).

It follows that the PRF scheme is IND-CPA.




