MATH/OMSC 456 :: UPDATED COLRSEINFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: /ntroduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (slides, reading);

Piazza: piazza.com/umd/spring2020/cmsc456
ELMS: active, slides and reading posted there, assignments will be as well.

Gradescope: active, access through ELMS.

Check these setups asap, and let me know if you run into issues!

TAs (Our spot: shared open area across from IRB 5234)

* Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (Iribe);

 Justin Hontz (jhontz@terpmail.umd.edu) Tpm-2pm MW (Iribe);

Additional help:

* Chen Bai (cbail@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL, starting Feb 4)

* Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL, starting Feb 6)


mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

RECAP: THEBGICEA

Shannon’s theorem: if you want perfect secrecy, one-time pad is as good as it gets.
Limits of one-time pad:

e can only send one message;

* message cannot be longer than the shared key; } solution: computationally-secure encryption
« what if you can’t share key in advance?

: : later in the course
« what if Eve is allowed to change messages? }

Obviously:
* the crypto we use every day does not suffer from these drawbacks;

* ...(Shannon’s theorem) it follows that we must relax perfect secrecy; What to do?
1. allow adversaries to succeed with exponentially-small probability (roughly);
2. allow adversaries to succeed after exponential time (roughly);

Claim: if done right, no “real” security loss, but huge gain in features!



RECAP : COMPUTATIONALLY-SEDURE ENCRYPTION

— =

Idea: use “good enough” randomness in OTP (instead of perfect.) (0.1} o (0,1}

plaintext ciphertext

n-bit (short) key

k
l PRG : expands n random bits to #(n) > n “pseudorandom” bits

0.1!™ ——| @ | (0,13*™

plaintext ciphertext

perform one-time pad as usual, but with the pseudorandom bits

PRG scheme
(To decrypt: reverse the arrows from ciphertext to plaintext.) Key generation :  sample k « {0,1}";
Encryption : Enc,(m) = m @ G(k);

Decryption : Deciy(c) =c P G(k) .



RECAP : COMPUTATIONALLY-SHOLRE ENCRYPTION

Idea: use “"good enough” randomness in OTP (instead of perfect.)

How to make this formal? ]I

1. define pseudorandomness;

0,10V —— @ — {0,1}*™

plaintext ciphertext

2. define notion of “efficient” and "“inefficient”;

3. define a relaxed notion of security;

4. prove that this scheme works.



RECAP: BFHOBNT VS INGFHOBNT

Efficient algorithms: probabilistic, polynomial-time (PPT.)
* running time: at most polynomial in the input size;
AND
* success probability: at least inverse-polynomial in input size;

Think: "Achieves a noticeable success probability, in a reasonable amount of time.”

Inefficient algorithms:

* running time: superpolynomial in input size (i.e., exponential or nearly so.);
OR

* success probability: at most inverse-superpolynomial (i.e., negligibile.)

Think: “can achieve noticeable success probability only by spending an UNreasonable amount of time.”



Cryptographic pseudorandomness

4 N\

r « {0,1}¥(™

S—’G =D_’b r—»D—»b




RECAP. “IND’ SHORELY

Indistinguishability experiment (IND).

1. A outputs two messages mgy, my with |my| = [my|; Enc, ¢
2. We sample a key k < KeyGen, and a coin b « {0,1};
then we give A the ciphertext ¢ « Enc,(my);
3. Aoutputs a bitb’.
c
Enc,

We say Awins if b = b/,

bl

bl

Definition. An encryption scheme (KeyGen, Enc, Dec) has indistinguishable ciphertexts if, for
every PPT adversary 4,

1
Pr[A wins IND] < > + negl(n).




PRG BENCRYPTION SEOLRITY PROOF

The PRG scheme is secure.

Theorem. The PRG scheme has indistinguishable ciphertexts.

Proof.

Proof by contradiction: “if PRG scheme is broken, then the underlying PRG is broken.”
More concretely:

* Let G be a PRG, and let I1(G) be the PRG scheme using G;

* Given a PPT A that wins IND game against I1(G) ...

« ...we build a PPT D who distinguishes the output of G from random:

D 2 G(s) D A




PRG BENCRYPTION SEOLRITY PROOF

“If there's an attacker A that can win the IND game, then there’s a distinguisher D against G."
D
r >
(= {O’l}f(n) Generate b < {0,1}

Computec =m;, @ r

mp, My A

b’ ~—

If b = b’, output 1;
Otherwise output 0. } > z€{0,1}.
Key facts: A will LOSE:
OTP perfect!
1. it ris uniformly random, A is playing the IND game against the one-time pad.
2. itrisG(s), Ais playing the IND game against the PRG scheme. P —

assumption!



PRG BENCRYPTION SEOLRITY PROOF

Let's analyze D.

Two cases:

(1.) 7 is uniformly random in {0,1}*(™.

« Then D is an exact simulation of this IND game:
A plays against the one-time pad with keylength #(n);
by perfect secrecy of OTP, A loses: Pr[b = b'] = 1/2;
it follows that Pr[z = 1] = 1/2.

(2.)r = G(s) for uniformly random s € {0,1}™.
« Then D is an exact simulation of this IND game:
« Aplays against the PRG scheme with PRG G;

* by assumption, A wins noticeably, i.e. Pr[b = b'] = 1/2 +1/p(n) for some polynomial p;
* itfollowsthat Pr[z = 1] =1/2 +1/p(n).

1 1 1
Pr{D(6()) = 1] = PD() = 1]| = KT@) —E| o







VAHAT DID PRG BNCRYPTION GET US?

PRGs enable:
* fixed-length encryption with poly-size messages;

« with stateful schemes, allows multiple messages, up to a total £(n) bits.

{01} —— & — {0,1}"

01}" —— & — {0,1"

* but how do you decrypt? What if the ciphertexts arrive out of order?
« and what if you don't want to keep state? (a potential attack avenue.)

A
« and what if you want to send arbitrarily many messages? {Q}



MORE POAERAUL ATTACKS

So far...

« our model still grants adversary very little power;

 they are only a passive observer;

* in real world, they can do much more!

For example: they can interrogate systems.

* try to connect to some authorized system;

* guess passwords and see what happens;

» send transmissions and see if they decrypt to something;

 use real world power over parties to get them to send encrypted messages.

How do we capture things like this in our framework? Oracle algorithms.



ORACLE ALGORITHVS

Oracle algorithm: Notation .
oracle function

 same as a regular algorithm, but can “invoke"” a special subroutine; /

* this subroutine simply evaluates some function, and has no other effect; Af

e the subroutine behaves like a “black box” or an “oracle”; /'

* it costs the algorithm only one timestep to query the oracle. ,
algorithm

Think: invoking a compiled library method/function when programming.

Example:
* recall the class NP and polynomial-time reductions;

* there is a poly-time algorithm which, given a SAT oracle, solves the Traveling Salesman Problem;

g4 TSP route through G

S




MORE POANERALL ATTACKS

Oracle algorithms for us:
* allow adversaries to “query” cryptosystem in various ways;

» they can use whatever they learn to try to devise a better attack.

Why give away more power?
» model real situations more accurately;
* eliminate unnecessary weaknesses in system;

+ explore ultimate limits of what crypto can do.

fr




MORE POAERAUL ATTACKS

Oracle algorithms for us:
* allow adversaries to “query” cryptosystem in various ways;

» they can use whatever they learn to try to devise a better attack.

Why give away more power?
» model real situations more accurately;
* eliminate unnecessary weaknesses in system;

+ explore ultimate limits of what crypto can do.

For example:
» give Eve access to encryption!

+ can we still have secrecy?

Ean




PSHLDORANDOM FUNCTIONS

A more powerful primitive: pseudorandom functions.

PRG PRF
* public algorithm G; « keyed algorithm F (kind of like encryption);
 ifyou plugin arandom string...  if you plugin any string..
* ...you get back a longer, pseudorandom * ...you get back a pseudorandom string.
string.
k < {0,1}"
s < {0,1}"

X1 ——> — pseudorandom
e B 2 — pseudorandom
k|, pseudorandom

s —— G +—— pseudorandom

X3——>

* query anywhere, as many times as you want...
. ... and still the output looks random!




PSHLDORANDOM FUNCTIONS

A more powerful primitive: pseudorandom functions. k < {0,1}"

X1—
Xog——

X3——

key:

Fy

— pseudorandom
— > pseudorandom
——  pseudorandom

- choose uniformly at random

It's a function family: _keep secret!

F:{0,1}" < {0, > (0,1}

input: choose any way you want output: will look pseudorandom

Given a key k € {0,1}", we get a function like this: F: {0,1}™ > {0,1}{).



PSHLDORANDOM FUNCTIONS

key input output

What does a PRF do? ' . o, . ‘ ' 1 ‘
F:{0,1}"* x {0,1}™ - {0,1}*

"Real” experiment: "Ideal” experiment:
« pick akey k « {0,1}"; « pick a completely random function R;
« “put function Fy in a box”; « “put function R in a box”;
* give box to an adversary; e give box to an adversary;
« adversary cannot open box... « adversary cannot open box...
* ... butcan pluginanyinput, and get output. VS * ...butcan pluginanyinput, and get output.
X F X R
I l k(%) oracle X l ()

A A



Formal definition: “oracle adversaries can't tell it apart from totally random”

uniformly random key

Fk uniformly random
function from m bits to ¢ bits

Fy(x)




PRFs ARE ANESOVE

Output of PRF looks random!

* it's indistinguishable from uniformly random;

« we know from OTP that uniformly random ciphertexts are good;
* 5o |let's build encryption!

 to encrypt, just apply the PRF: Enc,(m) = F;(m).

Easy to check: adversary can’t distinguish output from random.

Does this work?



PRFs vs PRGs

PRFs vs PRGs.

Can you build a PRG from a PRF?

Easy:

¢ Let F:{0,1}" x {0,1}" - {0,1}" be a PRF;
« Build a G: {0,1}™ - {0,1}?" like this:

e G(s) = F,(00---00)||F4(00 - 01)
 Easy to extend to arbitrary-length G.

Note:
* in PRG setting, seed is uniformly random...

« so we can use it for the key.

So are PRFs stronger than PRGs?



PRFs vs PRGs

Can you build a PRF from a PRG?

Let G: {0,1}™ = {0,1}*" be a PRG, and define:
Go:{0,1}" - {0,1}" by Go(x) =G|} “apply G, take left half”
G,:{0,1}" - {0,1}" by G,(x) = G(x)|3%; “apply G, take right half”

Define Fj: {0,1}" x {0,1}"* — {0,1}" by

Fr(x) = Gxn(Gxn(”' (le (Gxo (k))-+)

Theorem (Goldwasser, Goldreich, Micali ‘88): Fj is a pseudorandom function.



PRFs vs PRGs

Can you build a PRF from a PRG? e
Let G:{0,1}™ = {0,1}?" be a PRG, and define:

Go: {0,137 = (013" by Go(x) = G} } ——  Fp(x) = Gy, (G, (- (G, (Gy, (K)) -++)
G: (013" = (0,1 by Go(x) = G2,

k
Example: |
* suppose n=3 G
 compute F,(101).

A\ 4




PRFBENCRYPTION

One-time pad

What'’s a PRF good for?

Lots of things! Like really powerful encryption:

— =

01" —— & —— {0,1}"

plaintext Ciphertext

Construction (PRF encryption). Let F: {0,1}" x {0,1}" - {0,1}¢ be a PRF. Define a scheme:

« KeyGen: sample a PRF key k < {0,1}";
« Enc: on input a message m € {0,1}¢, sample r « {0,1}™ and output (r, Fx(r) @ m);

« Dec: oninput a ciphertext (7, c), output ¢ @ Fy(r).

randomness  {0,1}™

plaintext {0,1}*

» {0,1}™

{0)1}?

ciphertext

Some properties

at its core, there's still OTP
can send arbitrarily-many messages!
encryption is now a randomized algorithm



CPAATTACKS

What about security?
Enc

It turns out, we get a big upgrade there too.

Chosen plaintext attacks (CPA):
« at anytime during their attack...
* ... adversary can ask for an encryption of any message!

» “chosen plaintext”;

Examples.
* against OTP: query Enc,(0") = 0™ @ k = k. Complete key recovery with one query!
* against PRG scheme: can only encrypt a limited number of times...

* ...soadversary can just use them all up!



RECALL: “IND' SHCRECY

Indistinguishability experiment (IND).

1. A outputs two messages mgy, my with |my| = [my|; Enc, ¢
2. We sample a key k < KeyGen, and a coin b « {0,1};
then we give A the ciphertext ¢ « Enc,(my);
3. Aoutputs a bitb’.
c
Enc,

We say Awins if b = b/,

bl

bl

Definition. An encryption scheme (KeyGen, Enc, Dec) has indistinguishable ciphertexts if, for
every PPT adversary 4,

1
Pr[A wins IND] < > + negl(n).




IND-CPA

Indistinguishability under Chosen Plaintext Attack. Ency, b=0 Enc

INDCPA experiment:

1. Sample a key k < KeyGen; < b’
2. Give adversary oracle access to Ency;

3.  AE"k outputs two messages mg, my with |mg| = |my|;  ~TTTTTTTTTTTTTTTTTTTTTTTTTTmTTmTmsommm o mm e
4. Sample a coin b < {0,1}; give A ciphertext ¢ « Enc(my); . "
5. AE%koutputs a bit b

We say Awins if b = b/, Enc,, h=1 Enc;,

Definition. An encryption scheme (KeyGen, Enc, Dec) is IND-CPA if, for every PPT adversary A4,

1
Pr[A wins INDCPA experiment] < ) + negl(n).




End of Lecture 3.



