
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (slides, reading);

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there, assignments will be as well.

Gradescope: active, access through ELMS.

Check these setups asap, and let me know if you run into issues!

TAs (Our spot: shared open area across from IRB 5234)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (Iribe);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (Iribe);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL, starting Feb 4)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL, starting Feb 6)

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

RECAP : THE BIG IDEA

Shannon’s theorem: if you want perfect secrecy, one-time pad is as good as it gets.

Limits of one-time pad:

• can only send one message;

• message cannot be longer than the shared key;

• what if you can’t share key in advance?

• what if Eve is allowed to change messages?

• …

Obviously:

• the crypto we use every day does not suffer from these drawbacks;

• … (Shannon’s theorem) it follows that we must relax perfect secrecy; What to do?

1. allow adversaries to succeed with exponentially-small probability (roughly);

2. allow adversaries to succeed after exponential time (roughly);

Claim: if done right, no “real” security loss, but huge gain in features!

solution: computationally-secure encryption

later in the course

RECAP : COMPUTATIONALLY-SECURE ENCRYPTION

Idea: use “good enough” randomness in OTP (instead of perfect.)

(To decrypt: reverse the arrows from ciphertext to plaintext.)

0,1 ℓ(𝑛) ⨁ 0,1 ℓ(𝑛)

plaintext ciphertext

𝑮

𝑘

𝑛-bit (short) key

PRG : expands 𝑛 random bits to ℓ 𝑛 > 𝑛 “pseudorandom” bits

perform one-time pad as usual, but with the pseudorandom bits

One-time pad

𝑘

0,1 𝑛 ⨁ 0,1 𝑛

plaintext ciphertext

PRG scheme

Key generation : sample 𝑘 ← 0,1 𝑛;
Encryption : 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕𝑮(𝑘);
Decryption : 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑮(𝑘) .

RECAP : COMPUTATIONALLY-SECURE ENCRYPTION

Idea: use “good enough” randomness in OTP (instead of perfect.)

How to make this formal?

1. define pseudorandomness;

2. define notion of “efficient” and “inefficient”;

3. define a relaxed notion of security;

4. prove that this scheme works.

0,1 ℓ(𝑛) ⨁ 0,1 ℓ(𝑛)

plaintext ciphertext

𝑮

𝑘

RECAP : EFFICIENT VS INEFFICIENT

Efficient algorithms: probabilistic, polynomial-time (PPT.)

• running time: at most polynomial in the input size;

AND

• success probability: at least inverse-polynomial in input size;

Think: “Achieves a noticeable success probability, in a reasonable amount of time.”

Inefficient algorithms:

• running time: superpolynomial in input size (i.e., exponential or nearly so.);

OR

• success probability: at most inverse-superpolynomial (i.e., negligibile.)

Think: “can achieve noticeable success probability only by spending an UNreasonable amount of time.”

RECAP: PRGs

Cryptographic pseudorandomness

Definition. A pseudorandom generator is a deterministic, polynomial-time algorithm 𝑮 satisfying the
following:

1. (expansion) 𝑮: 0,1 𝑛 → 0,1 ℓ 𝑛 for some fixed polynomial ℓ satisfying ℓ 𝑛 > 𝑛 for all 𝑛.
2. (pseudorandomness) for every PPT algorithm 𝑫,

Pr 𝑫 𝑮 𝑠 = 1 − Pr 𝑫 𝑟 = 1 ≤ negl 𝑛 .
𝑠 ← 0,1 𝑛 𝑟 ← 0,1 ℓ(𝑛)

𝑟 ← 0,1 ℓ(𝑛)

𝑫𝑟 𝑏𝑮 𝑫

𝑠 ← 0,1 𝑛

𝑠 𝑏

RECAP: “IND” SECRECY

Indistinguishability experiment (IND).

1. 𝑨 outputs two messages 𝑚0, 𝑚1 with 𝑚0 = 𝑚1 ;

2. We sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧, and a coin 𝑏 ← 0,1 ;

then we give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

3. 𝑨 outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘 𝑨 𝑏′

𝑨

𝑚0

𝑚1
𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑐

𝑐

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 has indistinguishable ciphertexts if, for
every PPT adversary 𝑨,

Pr 𝑨 wins IND ≤
1

2
+ negl 𝑛 .

PRG ENCRYPTION: SECURITY PROOF

The PRG scheme is secure.

Proof.

Proof by contradiction: “if PRG scheme is broken, then the underlying PRG is broken.”

More concretely:

• Let 𝑮 be a PRG, and let Π(𝑮) be the PRG scheme using 𝑮;

• Given a PPT 𝑨 that wins IND game against Π(𝑮) …

• … we build a PPT 𝑫 who distinguishes the output of 𝑮 from random:

Theorem. The PRG scheme has indistinguishable ciphertexts.

𝑫 𝑨

0

𝑟 𝑫 𝑨

1

𝑮(𝑠)

PRG ENCRYPTION: SECURITY PROOF

“If there’s an attacker 𝑨 that can win the IND game, then there’s a distinguisher 𝑫 against 𝑮.”

Key facts:

1. if 𝑟 is uniformly random, 𝑨 is playing the IND game against the one-time pad.

2. if 𝑟 is 𝑮(𝑠), 𝑨 is playing the IND game against the PRG scheme.

𝑫
𝑟

∈ 0,1 ℓ 𝑛 Generate 𝑏 ← 0,1
Compute 𝑐 = 𝑚𝑏 ⊕𝑟

𝑐

𝑏′

If 𝑏 = 𝑏′, output 1;
Otherwise output 0. 𝑧 ∈ {0,1}.

𝑨𝑚0, 𝑚1

𝑨will LOSE:
OTP perfect!

𝑨will WIN: by
assumption!

PRG ENCRYPTION: SECURITY PROOF

Let’s analyze 𝑫.

Two cases:

(1.) 𝑟 is uniformly random in 0,1 ℓ 𝑛 .

• Then 𝑫 is an exact simulation of this IND game:

• 𝑨 plays against the one-time pad with keylength ℓ 𝑛 ;

• by perfect secrecy of OTP, 𝑨 loses: Pr 𝑏 = 𝑏′ = 1/2;

• it follows that Pr 𝑧 = 1 = 1/2.

(2.) 𝑟 = 𝑮 𝑠 for uniformly random 𝑠 ∈ 0,1 𝑛.

• Then 𝑫 is an exact simulation of this IND game:

• 𝑨 plays against the PRG scheme with PRG 𝑮;

• by assumption, 𝑨 wins noticeably, i.e. Pr 𝑏 = 𝑏′ ≥ 1/2 +1/𝑝(𝑛) for some polynomial 𝑝;

• it follows that Pr 𝑧 = 1 = 1/2 +1/𝑝(𝑛).

Pr 𝑫 𝑮 𝑠 = 1 − Pr 𝑫 𝑟 = 1 =
1

2
+

1

𝑝 𝑛
−
1

2
=

1

𝑝 𝑛
.

IV. PSEUDORANDOM FUNCTIONS

Reading: p.71-95

WHAT DID PRG ENCRYPTION GET US?

PRGs enable:

• fixed-length encryption with poly-size messages;

• with stateful schemes, allows multiple messages, up to a total ℓ(𝑛) bits.

• but how do you decrypt? What if the ciphertexts arrive out of order?

• and what if you don’t want to keep state? (a potential attack avenue.)

• and what if you want to send arbitrarily many messages?

0,1 𝑛 ⨁ 0,1 𝑛

𝑮

𝑘

0,1 𝑛 ⨁ 0,1 𝑛

MORE POWERFUL ATTACKS

So far…

• our model still grants adversary very little power;

• they are only a passive observer;

• in real world, they can do much more!

For example: they can interrogate systems.

• try to connect to some authorized system;

• guess passwords and see what happens;

• send transmissions and see if they decrypt to something;

• use real world power over parties to get them to send encrypted messages.

How do we capture things like this in our framework? Oracle algorithms.

Alice Bob
Eve

ORACLE ALGORITHMS

Oracle algorithm:

• same as a regular algorithm, but can “invoke” a special subroutine;

• this subroutine simply evaluates some function, and has no other effect;

• the subroutine behaves like a “black box” or an “oracle”;

• it costs the algorithm only one timestep to query the oracle.

Think: invoking a compiled library method/function when programming.

Example:

• recall the class NP and polynomial-time reductions;

• there is a poly-time algorithm which, given a SAT oracle, solves the Traveling Salesman Problem;

𝑨city map G TSP route through G

𝐒𝐀𝐓

Notation

𝑨𝒇

algorithm

oracle function

HARD!EASY!

MORE POWERFUL ATTACKS

Oracle algorithms for us:

• allow adversaries to “query” cryptosystem in various ways;

• they can use whatever they learn to try to devise a better attack.

Why give away more power?

• model real situations more accurately;

• eliminate unnecessary weaknesses in system;

• explore ultimate limits of what crypto can do.

Alice Bob
Eve

𝒇𝑘

𝑘 𝑘

MORE POWERFUL ATTACKS

Oracle algorithms for us:

• allow adversaries to “query” cryptosystem in various ways;

• they can use whatever they learn to try to devise a better attack.

Why give away more power?

• model real situations more accurately;

• eliminate unnecessary weaknesses in system;

• explore ultimate limits of what crypto can do.

For example:

• give Eve access to encryption!

• can we still have secrecy?

Alice Bob
Eve

𝐄𝐧𝐜𝑘

𝑘 𝑘

PRF
• keyed algorithm 𝑭 (kind of like encryption);
• if you plug in any string..
• … you get back a pseudorandom string.

PSEUDORANDOM FUNCTIONS

A more powerful primitive: pseudorandom functions.

𝑮

𝑠 ← 0,1 𝑛

𝑠 pseudorandom

PRG
• public algorithm 𝑮;
• if you plug in a random string…
• … you get back a longer, pseudorandom

string.

𝑭𝑘

𝑘 ← 0,1 𝑛

𝑥1 pseudorandom
𝑥2 pseudorandom
𝑥3 pseudorandom… …

• query anywhere, as many times as you want…
• … and still the output looks random!

PSEUDORANDOM FUNCTIONS

A more powerful primitive: pseudorandom functions.

It’s a function family:

𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ

Given a key 𝑘 ∈ 0,1 𝑛, we get a function like this: 𝑭𝑘: 0,1
𝑚 → 0,1 ℓ.

𝑭𝑘

𝑘 ← 0,1 𝑛

𝑥1 pseudorandom
𝑥2 pseudorandom
𝑥3 pseudorandom… …

key:
- choose uniformly at random
- keep secret!

input: choose any way you want output: will look pseudorandom

PSEUDORANDOM FUNCTIONS

What does a PRF do?

𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ

key input output

“Real” experiment:

• pick a key 𝑘 ← 0,1 𝑛;
• “put function 𝑭𝑘 in a box”;
• give box to an adversary;
• adversary cannot open box…
• … but can plug in any input, and get output.

𝑭𝑘

𝑨

𝑥 𝑭𝑘(𝑥)

“Ideal” experiment:

• pick a completely random function 𝑹;
• “put function 𝑹 in a box”;
• give box to an adversary;
• adversary cannot open box…
• … but can plug in any input, and get output.

𝑹

𝑨

𝑥 𝑹(𝑥)

vs

oracle

PSEUDORANDOM FUNCTIONS

Formal definition: “oracle adversaries can’t tell it apart from totally random”

Definition. A pseudorandom function is a deterministic, polynomial-time-computable function

𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ

such that, for every PPT algorithm 𝑨,

Pr 𝑨𝑭𝑘 1𝑛 = 1 − Pr 𝑨𝑹 1𝑛 = 1 ≤ negl 𝑛 .
𝑘 ← 0,1 𝑛 𝑹 ← ℱ𝑚,ℓ

𝑭𝑘

𝑨

𝑥 𝑭𝑘(𝑥)

uniformly random key

𝑹

𝑨

𝑥 𝑹(𝑥)

uniformly random
function from 𝑚 bits to ℓ bits

PRFs ARE AWESOME!

Output of PRF looks random!

• it’s indistinguishable from uniformly random;

• we know from OTP that uniformly random ciphertexts are good;

• so let’s build encryption!

• to encrypt, just apply the PRF: 𝐄𝐧𝐜𝑘 𝑚 = 𝑭𝑘 𝑚 .

Easy to check: adversary can’t distinguish output from random.

Does this work?

PRFs vs PRGs

PRFs vs PRGs.

Can you build a PRG from a PRF?

Easy:

• Let 𝑭: 0,1 𝑛 × 0,1 𝑛 → 0,1 𝑛 be a PRF;

• Build a 𝑮: 0,1 n → 0,1 2𝑛 like this:

• 𝑮 𝑠 ≔ 𝑭𝑠 00⋯00 ||𝑭𝑠(00⋯01)

• Easy to extend to arbitrary-length 𝑮.

Note:

• in PRG setting, seed is uniformly random…

• so we can use it for the key.

So are PRFs stronger than PRGs?

PRFs vs PRGs

Can you build a PRF from a PRG?

Let 𝑮: 0,1 n → 0,1 2𝑛 be a PRG, and define:

𝑮0: 0,1
n → 0,1 𝑛 by 𝑮0 𝑥 = 𝑮 𝑥 |1

𝑛

𝑮1: 0,1
n → 0,1 𝑛 by 𝑮0 𝑥 = 𝑮 𝑥 |𝑛+1

2𝑛

Define 𝑭𝑘: 0,1
𝑛 × 0,1 𝑛 → 0,1 𝑛 by

𝑭𝑘 𝑥 = 𝐺𝑥𝑛(𝐺𝑥𝑛(⋯ (𝐺𝑥1(𝐺𝑥0 𝑘)⋯)

“apply 𝑮, take left half”

“apply 𝑮, take right half”

Theorem (Goldwasser, Goldreich, Micali ‘88): 𝑭𝑘 is a pseudorandom function.

PRFs vs PRGs

Can you build a PRF from a PRG?

Let 𝑮: 0,1 n → 0,1 2𝑛 be a PRG, and define:

𝑮0: 0,1
n → 0,1 𝑛 by 𝑮0 𝑥 = 𝑮 𝑥 |1

𝑛

𝑮1: 0,1
n → 0,1 𝑛 by 𝑮0 𝑥 = 𝑮 𝑥 |𝑛+1

2𝑛

𝑭𝑘 𝑥 = 𝐺𝑥𝑛(𝐺𝑥𝑛(⋯ (𝐺𝑥1(𝐺𝑥0 𝑘)⋯)

𝑘

𝑮

Example:
• suppose n=3
• compute 𝑭𝑘(101).

𝑥0 = 1

𝑥1 = 0

𝑮

𝑮

𝑥2 = 1

“GGM PRF”

PRF ENCRYPTION

What’s a PRF good for?

Lots of things! Like really powerful encryption:

Construction (PRF encryption). Let 𝑭: 0,1 𝑛 × 0,1 𝑚 → 0,1 ℓ be a PRF. Define a scheme:

• 𝐊𝐞𝐲𝐆𝐞𝐧: sample a PRF key 𝑘 ← 0,1 𝑛;
• 𝐄𝐧𝐜: on input a message 𝑚 ∈ 0,1 ℓ, sample 𝑟 ← 0,1 𝑚 and output (𝑟, 𝑭𝑘 𝑟 ⊕𝑚);
• 𝐃𝐞𝐜: on input a ciphertext (𝑟, 𝑐), output 𝑐 ⊕ 𝑭𝑘 𝑟 .

𝑭𝑘

0,1 ℓ ⨁ 0,1 ℓplaintext

ciphertext

One-time pad

𝑘

0,1 𝑛 ⨁ 0,1 𝑛

plaintext ciphertext

0,1 𝑚randomness 0,1 𝑚 Some properties
• at its core, there’s still OTP
• can send arbitrarily-many messages!
• encryption is now a randomized algorithm

CPA ATTACKS

What about security?

It turns out, we get a big upgrade there too.

Chosen plaintext attacks (CPA):

• at anytime during their attack…

• … adversary can ask for an encryption of any message!

• “chosen plaintext”;

Examples.

• against OTP: query 𝐄𝐧𝐜𝑘 0𝑛 = 0𝑛 ⊕𝑘 = 𝑘. Complete key recovery with one query!

• against PRG scheme: can only encrypt a limited number of times…

• … so adversary can just use them all up!

Alice Bob
Eve

𝐄𝐧𝐜𝑘

𝑘 𝑘

RECALL: “IND” SECRECY

Indistinguishability experiment (IND).

1. 𝑨 outputs two messages 𝑚0, 𝑚1 with 𝑚0 = 𝑚1 ;

2. We sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧, and a coin 𝑏 ← 0,1 ;

then we give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

3. 𝑨 outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘 𝑨 𝑏′

𝑨

𝑚0

𝑚1
𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑐

𝑐

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 has indistinguishable ciphertexts if, for
every PPT adversary 𝑨,

Pr 𝑨 wins IND ≤
1

2
+ negl 𝑛 .

IND-CPA

Indistinguishability under Chosen Plaintext Attack.

INDCPA experiment:

1. Sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

2. Give adversary oracle access to 𝐄𝐧𝐜𝑘;

3. 𝑨𝐄𝐧𝐜𝑘 outputs two messages 𝑚0, 𝑚1 with 𝑚0 = 𝑚1 ;

4. Sample a coin 𝑏 ← 0,1 ; give 𝑨 ciphertext 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

5. 𝑨𝐄𝐧𝐜𝑘outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

Definition. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜,𝐃𝐞𝐜 is IND-CPA if, for every PPT adversary 𝑨,

Pr 𝑨 wins INDCPA experiment ≤
1

2
+ negl 𝑛 .

𝑚0

𝑚1
𝑨

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝑐

𝑐𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘

𝑨 𝑏′

𝑨 𝑏′

𝐄𝐧𝐜𝑘

𝐄𝐧𝐜𝑘

𝑏 = 0

𝑏 = 1

End of Lecture 3.

