
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: Introduction to Modern Cryptography , Katz and Lindell;

Webpage: alagic.org/cmsc -456-cryptography -spring -2020/ (check for updates);

Piazza: piazza.com/umd /spring2020/cmsc456

ELMS: active, slides posted there, assignments will be as well.

Gradescope : active, access through ELMS.

Check these setups asap, and let me know if you run into issues!

TAs (Our spot: shared open area across from IRB 5234)

ÅElijah Grubb (egrubb@cs.umd.edu) 11am -12pm TuTh (Iribe);

ÅJustin Hontz (jhontz@terpmail.umd.edu) 1pm -2pm MW (Iribe);

Additional help:

ÅChen Bai (cbai1@terpmail.umd.edu) 3:30 -5:30pm Tu (2115 ATL, starting Feb 4)

ÅBibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30 -5:30pm Th (2115 ATL, starting Feb 6)

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

RECAP : LOGISTICS

Course plan (big picture)

Å8 lectures: symmetric -key crypto

Å4 lectures: RSA and Diffie-Hellman (Carl Miller); 2 lectures : secret sharing (Bill Gasarch);

Åmidterm;

Å10 lectures: public -key crypto II, advanced topics;

Åfinal.

Grading: 40% homework, 30% midterm exam, 30% final exam

Homework(~ 10 sets): collaboration allowed, must write up your own, no late homework whatsoever (but
lowest grade will be dropped); first set distributed 2 nd week (ELMS ĄGradescope .)

Exams:

Åclosed book/device, one two -sided page of notes;

Åmidterm March 31 st ;

Åfinal May 18 th .

RECAP : HISTORICAL CIPHERS

Caesar cipher

Åbasic shift cipher;

Åbroken: brute -force keysearch.

Substitution cipher

Åpermute alphabet instead of shifting;

Åbroken: frequency analysis.

Vigenére cipher

Åê^iië §z^s|®k¶® ^|i ªk§k^®ki §^««§rª^«kÑ

Åbroken: frequency analysis + brute -force key.

ATTACK AT DAWN

DWWDFNDWGDZR

decryptencrypt

message (plaintext)

ciphertext

A B C D E F G H I J K L M Ễ

encrypt

decrypt

ὃᵐὢ
ὄᵐὊ
ὅᵐὈ
Ὀᵐὒ
Ὁᵐὖ
ȣ
ȣ

key

YOUCANEXPECTNOHELPFROMTHISSIDEOFTHERIVER

VICTORVICTORVICTORVICTORVICTORVICTORVICT

UXXWPFAGSYRLJXKYAHBARGIZEBVCSWKOWBTJEEHL

+

=

UXXWPF

AGSYRL

JXKYAH

BARGIZ

EBVCSW

KOWBTJ

EEHL

RECAP : MODERN CRYPTO

Why we do crypto this way?

Åhistory was not kind to previous ciphers;

Åfrom the 70s on: a much more rigorous approach;

Åfk ^« g^ªkp¯z ^|i p~ª{^z ^« §~««sfzk µrk| ik«gªsfs|q ®rk ®^«yÏ ®rk «k®®s|qÏ µr^® s® {k^|« ®~ fk ê«kg¯ªkÏë
the cryptosystem itself;

Åwhen possible, try to establish security via rigorous reasoning (i.e., theorem -proving.)

The course is about: the above approach, in the theoretical setting:

ê§~««sfzk s| §ªs|gs§zk Ò ´« s{§~««sfzkÏ k´k| s| §ªs|gs§zkë

N~{k ®rs|q« µk µ~|í® «®¯i·Ð

ÅIT security

Åreal-world implementation details

Åspecific performance/security tradeoffs

These are interesting things too, just not in scope.

RECAP: ENCRYPTION SCHEMES

Generic approach to encryption:

Ågenerate key via some algorithm: ὯᴺἕἭὁἑἭἶ

Åencrypt via some algorithm: ὧN ἏἶἫ ά

Ådecrypt via some algorithm: άᴺἎἭἫ ὧ

The triple ἕἭὁἑἭἶȟἏἶἫȟἎἭἫis called an encryption scheme.

Alice Bob
Eve

ὯᴺἕἭὁἑἭἶ

Ὧ Ὧ

ὧN ἏἶἫ ά

Pick message ά.

ὧ άᴺἎἭἫ ὧ

Correctness:

ἎἭἫ ἏἶἫ ά ά for all ά.

RECAP: ENCRYPTION SCHEMES: ONE-TIME PAD

Examples: one -time pad (Vernam cipher, ~1882)

ÅKey generation : sample uniformly random Ὧᶰπȟρ

ÅEncryption : ἏἶἫ ά άṥὯ

ÅDecryption : ἎἭἫ ὧ ὧṥὯ;

(note 1: messages are interpreted as bitstrings .)

(note 2: key length = message length = ciphertext length = ὲ.)

We proved that this is secure under one (and hence all) of our notions of perfect secrecy.

Basic proof idea:

Åkey is uniformly random;

Ågs§rkª®k¶® s« ^ ê«rsp®ë ~p ®rk yk· f· «~{k «®ªs|q Ý|^{kz· ®rk §z^s|®k¶®ÞÑ

Åhence ciphertext is also uniformly random, for any plaintext;

Åthis fulfills one of the definitions of perfect secrecy.

Bitwise XOR (ÍÏÄς:
πṥπ π
πṥρ ρ
ρṥρ π

Food for thought.
OTP key space is of size ς . If ὲ
is small (e.g., ς ςυφ, is brute-
force key search possible?

Get very friendly
and familiar with
OTP: it will keep

cropping up!

RECAP: ENCRYPTION SCHEMES: SECRECY

Definition 1. (very informal) An encryption scheme is semantically secret if, for all choices of adversary ═ȟ
message άȟê§ªs~ª s|p~ª{^®s~|ë p¯|g®s~| ὫȟÁÎÄê®^ªqk® s|p~ª{^®s~|ë p¯|g®s~| Ὢȟthe following property holds:

0ÒὪά ᴺ═ὫάȟἏἶἫ▓ά 0ÒὪά ᴺ═Ὣά Ȣ

Definition 2. An encryption scheme is perfectly secret if, for every plaintext distribution ִי , every
plaintext ά, and every ciphertext ὧ,

0Òὓ ά ὅ ὧ 0Òὓ ά Ȣ

Definition 3. An encryption scheme is perfectly secret if, for every plaintext distribution ִי , every
plaintext pair άȟάᴂ, and every ciphertext ὧ,

0ÒἏἶἫ ά ὧ 0ÒἏἶἫ ά ὧ

Definition 4. An encryption scheme has perfectly indistinguishable ciphertexts if, for every adversary ═ȟ

0Ò═×ÉÎÓÔÈÅ).$ÇÁÍÅ
ρ

ς
Ȣ

Theorem 1. Definitions 1 -4 are all equivalent.

II. (SIMPLE) ENCRYPTION
(continued)

Reading: Ch.2 (p.25-40)

ONE-TIME PAD : THE SCHEME

One -time pad

ÅKey generation : sample uniformly random Ὧᶰπȟρ ;

ÅEncryption : ἏἶἫ ά άṥὯ;

ÅDecryption : ἎἭἫ ὧ ὧṥὯ.

The OTP achieves perfect secrecy. Are there other schemes that do the job?

Åwhat this means: basically only one way to build an encryption scheme that satisfies perfect secrecy;

ÅÒ ^|i ®rk ~|k-time pad is it.

Nr^||~|í« Prk~ªk{ÎLet ἕἭὁἑἭἶȟἏἶἫȟἎἭἫbe an encryption scheme that satisfies perfect secrecy.
Let ִיȟfiȟꜟ denote the message, key, and ciphertext sets, respectively. Then fi יִ . Moreover, if
fi ȿִיȿ, then

1. ἕἭὁἑἭἶoutputs a uniformly random key in fi, and
2. For every άᶰִי and every ὧɴ ,ꜟ there exists a unique key Ὧᶰfi such that ἏἶἫ ά ὧ.

ONE-¢M_8 s 2 ˊ Mz M¢ v8 ZZ· ˨s8vE8-¢˩ˑ

Recall: we had a bunch of assumptions.

ÅAlice and Bob can share a secret in advance;

Åthey have their own private spaces;

ÅAlice can send only one transmission, on a single channel;

ÅEve (eavesdropper) can observe everything that is transmitted on that channel.

ÅEve cannot do anything else.

Alice Bob
Eve

Wr^® sp ®rk· g^|í®Õ

What if Eve can look at
"zsgkí« «gªkk|ÕWhat if they want to send

multiple messages?

What if Eve can also change
messages in transit?

What if Eve knows something
about what Alice will send?

ONE-¢M_8 s 2 ˊ Mz M¢ v8 ZZ· ˨s8vE8-¢˩ˑ

Consider: using OTP twice, i.e., to send ςὲbits.

Nr^||~|í« ®rk~ªk{Ð p~ª §kªpkg® «kgªkg·Ï fi ȿִיȿ. But here fi יִ Ⱦς. So not perfectly secret.

Some attack examples:

(1.) If Eve g^|í®know any of the plaintexts:

Åshe observes two ciphertexts ὧȟὧᶰπȟρ ;

Åthey were generated with same key: ὧ άṥὯand ὧ ά ṥὯ;

Åbitwise, so ὧ ὧᴂif and only if ά άᴂ. Plaintext information is leaking!

(2.) If Eve can know one of the plaintexts:

Åshe is told ά, and observes two ciphertexts ὧȟὧᶰπȟρ ;

Ånow ὧ άṥὯ, so Eve computes Ὧ ὧṥά;

Åcomplete key recovery, and trivial to recover άᴂ.

7| p^g®Ï Nr^||~| «^·« ·~¯ g^|í® k´k| ¯«k BPJ ®~ «k|i ὲ ρbits securely!

SCHEME BROKEN

SCHEME BROKEN

Corollary. To encrypt a hard drive,
you need another hard drive of equal
size to store the decryption key.

ONE-¢M_8 s 2 ˊ Mz M¢ v8 ZZ· ˨s8vE8-¢˩ˑ

Recall: we had a bunch of assumptions.

ÅAlice and Bob can share a secret in advance;

Åthey have their own private spaces;

ÅAlice can send only one transmission, on a single channel;

ÅEve (eavesdropper) can observe everything that is transmitted on that channel.

ÅEve cannot do anything else.

Later: we will see that the other relaxations are also a disaster for the OTP.

So what does this mean?

*· Nr^||~|í« ®rk~ªk{Ï s® {k^|« µk have to give up on something in perfect secrecy.

Wr^® sp ®rk· g^|í®Õ

What if Eve can look at
"zsgkí« «gªkk|ÕWhat if they want to send

multiple messages?

What if Eve can also change
messages in transit?

What if Eve knows something
about what Alice will send?

III. COMPUTATIONALLY-SECURE
ENCRYPTION

Reading: p.43-70

WHAT DO WE RELAX?

Shannon: if you want fancy features (like long messages) you have to give up something.

What can we give up?

ÅIf the adversary can break our scheme, but it takes them ρπbillion years, do we care?

ÅIf the adversary can break our scheme, but only with probability ρin ρπ , do we care?

ÅProbably not. Can we leverage that somehow? And get more out of crypto?

Prs« ê«s{§zkë gr^|qk ^zz~µ« ¯« ®~ q~ pª~{ f~ªs|qÏ ^z{~«® ¯«kzk«« gª·§®~ ÝBPJÞ Ò

Ò ®~ ^{^ºs|q gª·§®~ µr~«k zs{s®« µk ^ªk «®szz ®ª·s|q ®~ ¯|ikª«®^|iÓ

Definition 4. An encryption scheme has perfectly indistinguishable ciphertexts if, for every adversary ═ȟ

0Ò═×ÉÎÓÔÈÅ).$ÇÁÍÅ
ρ

ς
Ȣ

COMPUTATIONAL CRYPTO: A PREVIEW

>k®í« §~«®§~|k ®kgr|sg^z ik®^sz« p~ª |~µÎ

What could this give us? Recall OTP:

ÅKey generation : sample uniformly random Ὧᶰπȟρ ;

ÅEncryption : ἏἶἫ ά άṥὯ;

ÅDecryption : ἎἭἫ ὧ ὧṥὯ.

In pictures:

Reasonable to hope: sp |~ êpk^«sfzkë ^zq~ªs®r{ g^| is«®s|q¯s«r ╖Ὧ from random, then this scheme is
«kg¯ªk ^q^s|«® ^zz êpk^«sfzkë ^i´kª«^ªsk«Î

Remember from programming:
Random number generators: d eterministic
programs that turn a small seed into a much
z~|qkª «k©¯k|gk ~p êª^|i~{-z~~ys|që |¯{fkª«Î
Suppose

╖ȡπȟρ ᴼ πȟρ
is such a generator.

Ὧ

πȟρ ἅ πȟρ

plaintext ciphertext
πȟρ ἅ πȟρ

plaintext ciphertext

╖

Ὧn bits of perfect
randomness нƴ ōƛǘǎ ƻŦ άƎƻƻŘ ŜƴƻǳƎƘέ

randomness?

COMPUTATIONAL CRYPTO: A PREVIEW

>k®í« §~«®§~|k ®kgr|sg^z ik®^sz« p~ª |~µÎ

What could this give us? Recall OTP:

ÅKey generation : sample uniformly random Ὧᶰπȟρ ;

ÅEncryption : ἏἶἫ ά άṥὯ;

ÅDecryption : ἎἭἫ ὧ ὧṥὯ.

In pictures:

Reasonable to hope: sp |~ êpk^«sfzkë ^zq~ªs®r{ g^| is«®s|q¯s«r ╖Ὧ from random, then this scheme is
«kg¯ªk ^q^s|«® ^zz êpk^«sfzkë ^i´kª«^ªsk«Î

Remember from programming:
Random number generators: d eterministic
programs that turn a small seed into a much
z~|qkª «k©¯k|gk ~p êª^|i~{-z~~ys|që |¯{fkª«Î
Suppose

╖ȡπȟρ ᴼ πȟρ
is such a generator.

Ὧ

πȟρ ἅ πȟρ

plaintext ciphertext
πȟρ ἅ πȟρ

╖

Ὧn bits of perfect
randomness нƴ ōƛǘǎ ƻŦ άƎƻƻŘ ŜƴƻǳƎƘέ

randomness?

πȟρ ἅ πȟρ

COMPUTATIONAL CRYPTO: CHALLENGES

>k®í« §~«®§~|k ®kgr|sg^z ik®^sz« p~ª |~µÎ

What could this give us? Recall OTP:

ÅKey generation : sample uniformly random Ὧᶰπȟρ ;

ÅEncryption : ἏἶἫ ά άṥὯ;

ÅDecryption : ἎἭἫ ὧ ὧṥὯ.

In pictures:

Reasonable to hope: sp |~ êpk^«sfzkë ^zq~ªs®r{ g^| is«®s|q¯s«r ╖Ὧ from random, then this scheme is
«kg¯ªk ^q^s|«® ^zz êpk^«sfzkë ^i´kª«^ªsk«Î

Remember from programming:
Random number generators: d eterministic
programs that turn a small seed into a much
z~|qkª «k©¯k|gk ~p êª^|i~{-z~~ys|që |¯{fkª«Î
Suppose

╖ȡπȟρ ᴼ πȟρ
is such a generator.

Ὧ

πȟρ ἅ πȟρ

plaintext ciphertext
πȟρ ἅ πȟρ

╖

Ὧn bits of perfect
randomness нƴ ōƛǘǎ ƻŦ άƎƻƻŘ ŜƴƻǳƎƘέ

randomness?

πȟρ ἅ πȟρ

Could we prove this?

COMPUTATIONAL CRYPTO: CHALLENGES

This intuition seems sound. How can we formalize it?

1. Notions to define:

Åêª^|i~{-z~~ys|që

Åêq~~i-k|~¯qrë ª^|i~{|k««

Åêpk^«sfzkë ´« ês|pk^«sfzkë ^zq~ªs®r{«

Åê«kg¯ªkë k|gª·§®s~| Ýg^|í® fk «^{k ^« §kªpkg® «kgªkg·Ï µk q^´k ¯§ ~| ®r^®ÎÞ

2. Stuff to construct:

Å^ p¯|g®s~| µrsgr §ª~i¯gk« êq~~i k|~¯qrë ª^|i~{|k«« ^q^s|«® êpk^«sfzkë ^zq~ªs®r{«

3. Theorems we have to prove:

Åthe construction in the previous slide is secure.

EFFICIENT vs INEFFICIENT ALGORITHMS

Wr^® «r~¯zi êpk^«sfzkë Ý~ª kppsgsk|®Þ {k^|Õ

Åz~®« ~p |^®¯ª^z gr~sgk«Ï f¯®Ò

Åµk ^ªk s|®kªk«®ki s| ê§~««sfzk s| §ªs|gs§zkë ´« ê|~® §~««sfzkÏ k´k| s| §ªs|gs§zkÑë

Åwe want the theory to be simple and easy to work with;

Ås| §^ª®sg¯z^ªÏ µk i~|í® µ^|® ®~ µ~ªª· ^f~¯® ik®^sz« ~p ®rk g~{§¯®^®s~|^z {~ikzÎ

To address all of these issues, we will take an approach similar to that of complexity theory.

EFFICIENT vs INEFFICIENT ALGORITHMS

Wr^® «r~¯zi êpk^«sfzkë Ý~ª kppsgsk|®Þ {k^|Õ

Årunning time measured as a function of input size (e.g., searching a list of size ὲtakes time ὲ; generating a
list of all possible pairs takes time ὲ.)

Åwork asymptotically: we care about the large -ὲlimit, not what happens for, e.g., ὲ ςπ;

Årandomness: all algorithms are assumed to have access to as many uniformly random coins as needed;

Åefficient will mean that the running time is polynomial in the size of the input.

A bit more carefully:

We will often use the shorthand PPT meaning Probabilistic, Polynomial -Time algorithm.

Definition. An algorithm ═is efficient if there exists a polynomial ὴȡᴓᴼᴓand a positive integer ὔ
such that for all ὲ ὔand all ὼɴ πȟρ ȟthe running time of ═on input ὼis at most ὴὲ.

EFFICIENT vs INEFFICIENT ALGORITHMS

Wr^® ^f~¯® ês|pk^«sfzkëÕ

Åx¯«® ®rk |kq^®s~| ~p êpk^«sfzkëÓ

Åconcretely: the running time is larger than every polynomial

Åi.e., bigger than Î or even Î ;

Åfor example, exponential (e.g., ς) or more;

Åbut not necessarily exponential: consider ςЍ or ὲ ;

Åwe use the term superpolynomial .

What about success probability?

Similar approach: asymptotic, polynomial versus superpolynomial .

Åefficient : success probability ρȾὴὲ for some polynomial ὴ.

Åinefficient : success probability smaller than ρȾὴὲ for all polynomials ὴ.
also called negligible

and written ÎÅÇÌὲ.

EFFICIENT vs INEFFICIENT ALGORITHMS

Recall: algorithms can often be repeated to amplify success probability;

B¯ª |~®s~|« ^ªk ê«®^fzkë ¯|ikª ®rs« «~ª® ~p ^{§zspsg^®s~|Ñ

In particular:

Åconsider some random experiment (e.g., an adversary attacks some cryptosystem.)

Åsuppose some event ╔(e.g., system is broken) occurs with negligible probability;

Ånow repeat the experiment ὴὲ times for any polynomial ὴ;

Åwhat is the probability that ╔occurs in at least one of the experiments?

/¶kªgs«kÐ s®í« «®szz |kqzsqsfzkÎ

COMPUTATIONAL CRYPTO: CHALLENGES

This intuition seems sound. How can we formalize it?

1. Notions to define:

Åêª^|i~{-z~~ys|që

Åêq~~i-k|~¯qrë ª^|i~{|k««

Åêpk^«sfzkë ´« ês|pk^«sfzkë ^zq~ªs®r{«

Åê«kg¯ªkë k|gª·§®s~| Ýg^|í® fk «^{k ^« §kªpkg® «kgªkg·Ï µk q^´k ¯§ ~| ®r^®ÎÞ

2. Stuff to construct:

Å^ p¯|g®s~| µrsgr §ª~i¯gk« êq~~i k|~¯qrë ª^|i~{|k«« ^q^s|«® êpk^«sfzkë ^zq~ªs®r{«

3. Theorems we have to prove:

Åthe construction in the previous slide is secure.

PSEUDORANDOMNESS

Cryptographic pseudorandomness

Wkíªk |~® r^§§· µs®r q^ªik|-variety random number generators.

We need something much stronger. We need indistinguishability from perfectly random.

Let ╖ȡπȟρ ᴼ πȟρ . Pick some algorithm ╓. Consider these two experiments:

Crucial: ▼is sampled uniformly at random! (Otherwise, ╖ίcould simply be a fixed string!)

Want: there is no efficient algorithm for ╓ÔÈÁÔÃan distinguish these two experiments.

ὶN πȟρ

╓ὶ ὦ ╖ ╓

ίN πȟρ

ί ὦ

PSEUDORANDOM GENERATORS

Cryptographic pseudorandomness

Definition. A pseudorandom generator is a deterministic, polynomial -time algorithm ╖satisfying the
following:

1. (expansion) ╖ȡπȟρ ᴼ πȟρЉ for some fixed polynomial Љsatisfying Љὲ ὲfor all ὲ.
2. (pseudorandomness) for every PPT algorithm ╓,

0Ò╓╖ί ρ 0Ò╓ὶ ρ ÎÅÇÌὲȢ
ίN πȟρ ὶN πȟρЉ

ὶN πȟρЉ

╓ὶ ὦ╖ ╓

ίN πȟρ

ί ὦ

