
Cryptography
CMSC/MATH 456 : Spring 2020



ABOUT THE COURSE

Instructor: Gorjan Alagic (galagic@umd.edu); ATL 3102, office hours: by appointment

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/ (check for updates);

Piazza, Gradescope, ELMS: coming soon.

TAs: 

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (Iribe);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (Iribe);

Our designated spot: shared open area across from IRB 5234

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL, starting Feb 4)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL, starting Feb 6)

mailto:galagic@umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/


ABOUT THE COURSE

The fun stuff (see syllabus for details.)

Grading: 40% homework, 30% midterm exam, 30% final exam

Homework (~ 10 sets): 

• collaboration allowed, but must write up your own;

• no late homework whatsoever (but lowest grade will be dropped);

• first set distributed 2nd week.

Exams:

• closed book/device, one two-sided page of notes; 

• midterm March 31st ; 

• final May 18th .



ABOUT THE COURSE

Approximate course plan:

Topic Dates

Intro and symmetric-key cryptography (8 lectures) January 28 – February 20

RSA and Diffie-Hellman (4 lectures) Carl Miller February 25 – March 5

Secret sharing (2 lectures) Bill Gasarch March 10 - 12

Midterm review and midterm; 2 fun guest lectures March 24 – Apr 2

Public-key cryptography II, advanced topics (10 lectures) Apr 7 – May 12



WHAT IS THIS COURSE ABOUT?

What it IS about:

• theoretical cryptography;

• “replacing trust with mathematics” (- Boaz Barak);

• exploring limits of what is possible in principle; 

• fundamental tasks: encryption, authentication

What we WILL do:

• define concepts rigorously, prove theorems

• analyze cryptosystems and attacks in terms of 
“possible in principle” vs “impossible, even in 
principle”

What it is NOT about:

• practical IT security;

• hacking, spoofing, fishing, DOS attacks, etc.;

• real-world implementations;

• bleeding edge theory: obfuscation, quantum FHE

What we will NOT do:

• implement real cryptosystems or attacks

• analyze cryptosystems and attacks in terms of 
concrete costs (e.g., 20 minutes vs 2 hours on a 
four-core Xeon with 32GB RAM…?)



WHAT IS THIS COURSE ABOUT?

What background should you refresh?

• Discrete probability: random variables and events, conditional probability, expectation, etc.;

• Theory of computation: basic algorithms and programming concepts, asymptotic analysis (O-
notation), etc;

• Mathematical rigor: formal definitions, notation, theorems, proofs;

Basically, the stuff you (hopefully) did in discrete math.



I. THE (SKETCHY) HISTORY 
OF CRYPTO

Reading: xv – p.24.



WHAT IS CRYPTOGRAPHY?

What is cryptography?

How will we study it in this course?

Why will we do it that way?

To answer all this: need to first look at how crypto has been done for most of history.

This is not a “boring history lesson” you can ignore!

• people were very clever before computers too!

• develop intuition about what “good crypto” and “bad crypto” look like;

• learn basic techniques for breaking cryptosystems;

• understand why we now do crypto the way we do it;

• some historical schemes still crop up in modern crypto!

…and besides, history is awesome!



HISTORICAL CIPHERS : CAESAR CIPHER

Caesar cipher

Goal: “send secret messages”

• shift each letter in the message, remove spaces

• Caesar himself used this; his key was 3, like this:

• apparently, Caesar used this successfully for many years

• in 2011, used in a plot to attack airliners (no, really.)

Is it secure? 

ATTACK AT DAWN

DWWDFNDWGDZR

decryptencrypt

A B C D E F G H I J K L M  ⋯

encrypt

decrypt

message (plaintext)

ciphertext



HISTORICAL CIPHERS : CAESAR CIPHER

No! Brute force keysearch:

Suppose you see the message “dwwdfndwrqfh” (but you don’t know Caesar’s key.) 

Try all possible decryption keys:

Only 26 possibilities, so easy! (The 2011 plot failed and the plotters were caught.)

Must have: big keyspace.

0 dwwdfndwrqfh

-1 cvvcemcvqpeg

-2 buubdlbupodf

-3 attackatonce

-4 zsszbjzsnmbd

-5 yrryaiyrmlac

……



HISTORICAL CIPHERS : SUBSTITUTION CIPHER

Substitution cipher

• each letter of the alphabet is mapped to another, randomly selected letter

• for example:

• used in 1586 plot by Mary, Queen of Scots to assassinate Queen Elizabeth and install Mary as queen;

• Mary used the cipher to instruct her collaborators to kill the queen!

Key space: 26! ≈ 1026

Is it secure?

𝐴 ↦ 𝑋
𝐵 ↦ 𝐹
𝐶 ↦ 𝐷
𝐷 ↦ 𝐿
𝐸 ↦ 𝑃
…
…

BEE BED DEAD

FPPFPLLPXL

decryptencrypt

key



HISTORICAL CIPHERS : SUBSTITUTION CIPHER

Unfortunately for Mary, an Arab philosopher named Al-Kindi broke this cipher over 700 years prior.

Frequency analysis

• plot average frequency of letters in spoken English;

• do the same for the encrypted message;

• permute the letters to make the plots match up;

• the resulting permutation is (probably close to) the key!

• Mary’s messages were intercepted and broken with frequency analysis;

• using the key, the messages were even changed to get her to reveal her conspirators (authentication?);

• based on this, Mary was found guilty and beheaded.

Crypto mattered a lot even in 1586!



HISTORICAL CIPHERS : VIGENÈRE CIPHER

If Mary had a better cryptographer, she would have used Vigenère cipher (discovered a few years prior.)

Used by the Confederacy in the U.S. Civil War.

Is it secure?

YOUCANEXPECTNOHELPFROMTHISSIDEOFTHERIVER

VICTORVICTORVICTORVICTORVICTORVICTORVICT

UXXWPFAGSYRLJXKYAHBARGIZEBVCSWKOWBTJEEHL

+
=

+ means add letters

as numbers (mod 28)



HISTORICAL CIPHERS : VIGENÈRE CIPHER

Guess the length of the passphrase. Then split up ciphertext:

• each column is a Caesar cipher; 26 choices there, but 266 ≈ 309 million total! No good…

• instead, frequency analysis with a twist: plot of first column = English alphabet translated by V!

It took over 300 years for someone to figure this out and break Vigenère. (So Mary might have gotten 
away with it!)

YOUCANEXPECTNOHELPFROMTHISSIDEOFTHERIVER

VICTORVICTORVICTORVICTORVICTORVICTORVICT

UXXWPFAGSYRLJXKYAHBARGIZEBVCSWKOWBTJEEHL

+
=

UXXWPF

AGSYRL

JXKYAH

BARGIZ

EBVCSW

KOWBTJ

EEHL



WHAT WENT WRONG?

Lessons learned

• key space needs to be large (prevent brute force key search);

• scheme needs to resist frequency analysis, sometimes in non-obvious ways;

• what else? Is that enough?

• … as it turns out, it’s not; throughout history, each attempt to “patch” was eventually circumvented.

• (fun read: Enigma in WW2.)

The first “unbreakable” cipher was not discovered until 1882! 

• why did it take so long?

• people have been clever for a long time; that didn’t start in 1882;

• modern crypto seems to be a lot more “stable” than the stuff we discussed above

• what changed?

• (also: if there’s an unbreakable cipher, what is left to do? As we will see, a lot!)



WHAT DO WE DO DIFFERENTLY NOW?

The modern (theoretical) approach (~1970s on)

• emphasis on mathematical rigor

• formal definitions : what is known to everyone, and what needs to stay secret?

• formal definitions : what exactly is the cryptosystem trying to achieve?

• formal definitions : when is a cryptosystem considered “secure”?

• security proofs: mathematical theorems establishing security (with important caveats!)

… and lots and lots of clever cryptographic (design) work and cryptanalytic (attack) work!

These will be the ideas that we will explore in this course.

“the key”“the algorithm”

Kerckhoffs's principle
A cryptosystem should be secure even if 
everything about the system, except the 

key, is public knowledge.



II. (SIMPLE) ENCRYPTION

Reading: Ch.2 (p.25-40)



ENCRYPTION : THE SETTING

Task: Alice wants to send a single message to Bob, but Eve is watching the channel.

Assumptions:

• Alice and Bob can share a secret in advance;

• they have their own private spaces;

• Alice can send only one transmission, on a single channel;

• Eve (eavesdropper) can observe everything that is transmitted on that channel. 

• Eve cannot do anything else.

Alice Bob
Eve

Wait, why not just use this 
“assumption” to send the message?



ENCRYPTION SCHEMES

Generic approach to this task:

• generate key via some algorithm: 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

• encrypt via some algorithm: 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚

• decrypt via some algorithm: 𝑚 ← 𝐃𝐞𝐜𝑘 𝑐

The triple 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜 is called an encryption scheme.

Alice Bob
Eve

Message-independent distribution.



ENCRYPTION SCHEMES

Generic approach to this task:

• generate key via some algorithm: 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

• encrypt via some algorithm: 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚

• decrypt via some algorithm: 𝑚 ← 𝐃𝐞𝐜𝑘 𝑐

The triple 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜 is called an encryption scheme.

Alice Bob
Eve

𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧

𝑘 𝑘

𝑐 ← 𝐄𝐧𝐜𝑘 𝑚

Pick message 𝑚.

𝑐 𝑚 ← 𝐃𝐞𝐜𝑘 𝑐

Correctness:

𝐃𝐞𝐜𝑘 𝐄𝐧𝐜𝑘 𝑚 = 𝑚 for all 𝑚.



ENCRYPTION SCHEMES

Examples

Let’s look at our initial Caesar’s cipher example.

Alice Bob
Eve

3 ← 𝐊𝐞𝐲𝐆𝐞𝐧

3 3

DWWDFNDWGDZR ← 𝐄𝐧𝐜3 ATTACK AT DAWN

Pick message ATTACK AT DAWN.

DWWDFNDWGDZR ATTACK AT DAWN ← 𝐃𝐞𝐜3 DWWDFNDWGDZR

Eve tries all 26 possible shifts,
recovers key and message.

SCHEME BROKEN



ENCRYPTION SCHEMES: ONE-TIME PAD

Examples: one-time pad (Vernam cipher, ~1882)

• Key generation : sample uniformly random 𝑘 ∈ 0,1 𝑛

• Encryption : 𝐄𝐧𝐜𝑘 𝑚 = 𝑚⊕𝑘

• Decryption : 𝐃𝐞𝐜𝑘 𝑐 = 𝑐 ⊕ 𝑘 ; 

(note 1: messages are interpreted as bitstrings.)

(note 2: key length = message length = ciphertext length = 𝑛.)

Bitwise XOR (+mod 2):
0⊕ 0 = 0
0⊕ 1 = 1
1⊕ 1 = 0

Alice Bob
Eve

0110 ← 𝐊𝐞𝐲𝐆𝐞𝐧

0110 0110

𝑐 = 1110⊕ 0110
= 1000

𝑚 = 1110.

1000 𝑚 = 1000⊕ 0110
= 1110

Check correctness:

𝐃𝐞𝐜𝑘 𝐄𝐧𝐜𝑘 𝑚 = (𝑚⊕ 𝑘)⊕ 𝑘 = 𝑚



ENCRYPTION

Is the one-time pad (OTP) secure?

What does it mean to be secure?

• impossible to recover the key?

Consider this scheme:

• impossible to recover message?

Consider a scheme like this:

More generally: what do we mean by “impossible to recover”?

• 𝐊𝐞𝐲𝐆𝐞𝐧 outputs a random string 𝑘 ∈ 0,1 𝑛.
• 𝐄𝐧𝐜𝒌 𝑚 = 𝑚. totally insecure!

𝐄𝐧𝐜𝒌 𝑚 = 𝑚1𝑚2𝑚3𝑚4 ∗∗∗∗∗∗∗∗.

first 4 bits leak rest are secret (somehow)

Or something more insidious…
… like leaking the parity of 𝑚?



A LITTLE PROBABILITY

Random variables

• outcome of some random experiment; denoted with capital letters: 𝑋, 𝑌,𝑀, 𝐶, … ;

• comes with a probability distribution; denoted with calligraphic letters: 𝒳,𝒴,ℳ, 𝒞,…;

• possible values (or samples) denoted with lowercase letters: 𝑥, 𝑦,𝑚, 𝑐, … ;

• event: a subset of the sample space of some random experiment.

Examples

Let 𝑋 be uniformly random on 0,1 𝑛. Then Pr 𝑋 = 𝑥 = 2−𝑛 for all 𝑥 ∈ 0,1 𝑛.

Let 𝑋 be uniformly random on S = {0,1,2,3,4}. Then 𝐄 𝑋 = σ𝑠∈S Pr 𝑋 = 𝑠 ⋅ 𝑠 =
1

5
0 + 1 + 2 + 3 + 4 = 2.

Let 𝐸1, 𝐸2 be events. Then Pr 𝐸1 𝐸2 ≔
Pr[𝐸1∧𝐸2]

Pr[𝐸2]
.

RV value

event

𝐸1
𝐸2

𝐸1 ∧ 𝐸2

sample space



ENCRYPTION: SECRECY: CANDIDATE I

Secrecy: a good attempt.

“The adversary never learns anything new about the plaintext by looking at the ciphertext.”

This is called semantic security. A very informal way to state it:

Super complicated! And we haven’t even properly formalized it…

Definition 1. (very informal) An encryption scheme is semantically secret if, for all choices of:
• adversary 𝑨,
• message 𝑚,
• “prior information” function 𝑔, and
• “target information” function 𝑓,

the following property holds:

Pr 𝑓 𝑚 ← 𝑨 𝑔 𝑚 , 𝐄𝐧𝐜𝒌 𝑚 = Pr 𝑓 𝑚 ← 𝑨 𝑔 𝑚 .

“Look, I studied the ciphertext carefully and learned 
something interesting about the plaintext!”

“Actually, you could have learned it 
without looking at the ciphertext at all!”



ENCRYPTION: SECRECY: CANDIDATE II

Secrecy: “perfect secrecy” (KL p.29)

What does the notation mean? This is the random experiment:

• Sample a uniformly random key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

• Get a sample from the random variable 𝑀 with distribution ℳ;

• Run encryption 𝐄𝐧𝐜𝒌 on the sample; the result is the random variable 𝐶;

Sounds like semantic secrecy, but without all the baggage. Good enough?

Definition 2. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜 is perfectly secret if, for every plaintext 
distribution ℳ, every plaintext 𝑚, and every ciphertext 𝑐,

Pr 𝑀 = 𝑚 𝐶 = 𝑐] = Pr 𝑀 = 𝑚 .

“The probability that the plaintext is some particular 𝑚,
if you DID see the ciphertext.”

“The probability that the plaintext is some particular 𝑚,
if you DID NOT see the ciphertext.”



ENCRYPTION: SECRECY: CANDIDATE III

Secrecy: what about this one?

Something like: “If the key is secret, then the distribution of ciphertexts is independent of the message.”

Looks pretty good too. Is it right?

Definition 3. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜 is perfectly secret if, for every plaintext 
distribution ℳ, every plaintext pair 𝑚,𝑚′, and every ciphertext 𝑐,

Pr
𝑘
𝐄𝐧𝐜𝑘 𝑚 = 𝑐 = Pr

𝑘
[𝐄𝐧𝐜𝑘 𝑚′ = 𝑐]



ENCRYPTION: SECRECY: CANDIDATE IV

Secrecy: let’s do it with an experiment (or game, if you like.)

Indistinguishability experiment (IND).

1. we sample a key 𝑘 ← 𝐊𝐞𝐲𝐆𝐞𝐧;

2. adversary (Eve) 𝑨 outputs two messages 𝑚0, 𝑚1;

3. we flip a uniform coin 𝑏 ← 0,1 ;

4. we give 𝑨 the ciphertext 𝑐 ← 𝐄𝐧𝐜𝑘 𝑚𝑏 ;

5. 𝑨 outputs a bit 𝑏′.

We say 𝑨 wins if 𝑏 = 𝑏′.

Definition 4. An encryption scheme 𝐊𝐞𝐲𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜 has perfectly indistinguishable 
ciphertexts if, for every adversary 𝑨,

Pr
𝑘
𝑨 wins IND =

1

2
.

𝑨

𝑚0

𝑚1

𝐄𝐧𝐜𝑘 𝑨 𝑏′

𝑨

𝑚0

𝑚1
𝐄𝐧𝐜𝑘

𝑨 𝑏′



ENCRYPTION: SECRECY

Surprise: (I know, not really…)

• proof is not very hard; some parts in book, others in homework;

• studying how the proofs work is worthwhile.

This is awesome:

• each definition comes with some natural intuition: a secure scheme should satisfy it;

• that they are all equivalent is an indication that we are on to a good notion;

• the definitions are reasonably different in form; as a result, they will be useful in different situations;

• some have an explicit adversary, others do not!

• you can pick which one to use depending on context.

Theorem 1. Definitions 1-4 are all equivalent. In particular, 

semantic secrecy  ⟺ perfect secrecy  ⟺ perfectly indistinguishable ciphertexts.



ENCRYPTION: SECRECY OF ONE-TIME PAD

Example: one-time pad.

Which definition should we use? Let’s do Definition 3: Pr
𝑘
𝐄𝐧𝐜𝑘 𝑚 = 𝑐 = Pr

𝑘
[𝐄𝐧𝐜𝑘 𝑚′ = 𝑐] .

Simple argument:

• 𝑘 ← 0,1 𝑛 is a uniformly random bitstring. 

• for any fixed 𝑥, observe that 𝑥 ⊕ 𝑘 is also uniformly random in 0,1 𝑛.

• in particular, Pr
𝑘
𝑥 ⊕ 𝑘 = 𝑐 = 2−𝑛 for any 𝑐 ∈ 0,1 𝑛.

• but this holds for any fixed 𝑥. In particular, it holds for both 𝑚 and 𝑚′ from the setup in Definition 3.

It follows that 

Pr
𝑘
𝐄𝐧𝐜𝑘 𝑚 = 𝑐 =

1

2𝑛
= Pr

𝑘
[𝐄𝐧𝐜𝑘 𝑚′ = 𝑐]

So the one-time pad is perfectly secret, and (by Theorem 1) all those other great things too.

So we have perfectly secure, unbreakable encryption! Is the course over?



---

End of Lecture 1.


