
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu)

Guest instructor: Carl Miller (camiller@umd.edu), ATL 3100K

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there, homework 3 due midnight Thursday.

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL – inside JQI)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL – inside JQI)

Current readings:

Feb 25: pp. 285-297

Feb 27: pp. 302-324 (skip 
subsections 8.2.2 and 8.2.5) 
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http://www.alagic.org/cmsc-456-cryptography-spring-2020/


RECAP: Secret-key vs. Public-key cryptography

A MAC (Message Authentication Code) is an example of secret-key cryptography.

Alice uses the secret key k to authenticate a message, which is then verified by Bob.

Limitations:

- Alice & Bob have to find a way to exchange the key k secretly.

- Any party that can verify an authentication code can also forge one!
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RECAP: Secret-key vs. Public-key cryptography

In public-key cryptography, Alice creates a public key (pk) and a secret key (sk).

The public key is broadcast – anyone can know it.

Desired properties:

- Alice can sign a message in such way that her signature can be verified, but not forged, using pk.

- Anyone who has pk can encrypt, but not decrypt, a message to Alice.

We always want to make our protocol computationally easy to carry out, and computationally difficult for 
an adversary to break.
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Classical (non-quantum) cryptography relies on the assumption that certain computational problems are 
hard.

Example from February 13th: Collision-resistance for keyed hash-function.

We assume that, given randomly chosen s, it is hard to find a collision for ℋ𝑠.

Properties of this problem:

- It is easy to describe.  (Just specify the hash function – e.g., SHA3.)

- It is easy to check a valid answer.

- We believe that it is hard to find a valid answer.

COMPUTATIONALLY DIFFICULT PROBLEMS

𝑥 𝑥′

𝑦

ℋ𝑠ℋ𝑠



How about factoring numbers?

Problem: Suppose that n is a positive integer (expressed as a string of bits).  Express n as

𝑛 = 𝑝* + 𝑝, + 𝑝- + ⋯ + 𝑝/,
where each 𝑝1 is prime (i.e., has no factors other than 1 and itself).

It is easy to check a factorization (in time less than a polynomial function of the number of bits).

However, no polynomial-time, non-quantum algorithm for factoring numbers is currently known.

The Plan:

1. Do a detailed study of some basic number theory.

2. Build a public-key cryptosystem based on the hardness of factoring.

COMPUTATIONALLY DIFFICULT PROBLEMS



MODULAR ARITHMETIC: Notation & Examples



Let ℤ denote the set of all integers.

ℤ = … ,−2,−1,0,1,2,3, …

For any 𝑛, 𝑞 ∈ ℤ with 𝑞 ≠ 0, the expression

[𝑛 mod 𝑞]

denotes the remainder of 𝑛 after division by 𝑞.
(Always, 0 ≤ 𝑛 mod 𝑞 < 𝑞. )

Examples: 2459 mod 100 = 59.
(−4) mod 7 = 3.

ARITHMETIC: THE BEGINNING

“Consider thyself to be dead, 
and to have completed thy 
life up to the present time; 
and live according to nature 
the remainder which 
is allowed thee.”

- Marcus Aurelius



Let ℤJ denote the set.

ℤJ = 0,1,2,3, … , 𝑞 − 1

For any 𝑎, 𝑏 ∈ ℤJ, the elements

[(𝑎 + 𝑏) mod 𝑞]
[ 𝑎 + 𝑏 mod 𝑞]

are also elements of ℤJ.  

Example: 31 + 8 mod 100 = 248 mod 100 = 48.

ARITHMETIC: THE BEGINNING

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛:

If 𝑛,𝑚 are integers, then
𝑛 = 𝑚mod 𝑞

means 
𝑛 𝑚𝑜𝑑 𝑞 = [𝑚 𝑚𝑜𝑑 𝑞].



Also, for any 𝑎 ∈ ℤJ and 𝑛 > 0, the integer
[𝑎[ mod 𝑞]

is an element of ℤJ.

Trick: When carrying out multiple operations, you can mod out as you go.

[ 2 + 3 + 4 + 4 mod 5]
= 6 + 16 mod 5
= 1 + 1 mod 5

= 𝟏

ARITHMETIC: THE BEGINNING



#1: Compute 21 + 33 + 495 + 433 mod 10 .

21 + 33 + 495 + 433 mod 10
= 1 + 3 + 5 + 3 mod 10

= 45 mod 10 = 𝟓.

#2: Compute 2*_* mod 7 .

([21 mod 7]) = 2,4,1,2,4,1,2,4,1…
The	101st	term	in	this	sequence	is	4.

To	show	this	answer	more	formally:
2*_* mod 7 = [2qq + 2, mod 7] = [2-+-- + 2, mod 7]

= 8 -- + 4 mod 7 = 1-- + 4 mod 7 = 4.

TWO EXERCISES (no calculators!)



Let 𝑓: ℤq → ℤq be the function defined by 𝑓 𝑎 = 𝑎 + 4 𝑚𝑜𝑑 9 .

𝑓 0 = 4
𝑓 1 = 5
𝑓 2 = 6
𝑓 3 = 7
𝑓 4 = 8
𝑓 5 = 0
𝑓 6 = 1
𝑓 7 = 2
𝑓 8 = 3

ADDITION AND MULTIPLICATION IN ℤJ



Let 𝑓: ℤq → ℤq be the function defined by 𝑓 𝑎 = 𝑎 + 5 𝑚𝑜𝑑 9 .

𝑓 0 = 5
𝑓 1 = 6
𝑓 2 = 7
𝑓 3 = 8
𝑓 4 = 0
𝑓 5 = 1
𝑓 6 = 2
𝑓 7 = 3
𝑓 8 = 4

ADDITION AND MULTIPLICATION IN ℤJ



Let 𝑓: ℤq → ℤq be the function defined by 𝑓 𝑎 = [ 4𝑎 𝑚𝑜𝑑 9].

𝑓 0 = 0
𝑓 1 = 4
𝑓 2 = 8
𝑓 3 = 3
𝑓 4 = 7
𝑓 5 = 2
𝑓 6 = 6
𝑓 7 = 1
𝑓 8 = 5

ADDITION AND MULTIPLICATION IN ℤJ



Let 𝑓: ℤq → ℤq be the function defined by 𝑓 𝑎 = [ 5𝑎 𝑚𝑜𝑑 9].

𝑓 0 = 0
𝑓 1 = 5
𝑓 2 = 1
𝑓 3 = 6
𝑓 4 = 2
𝑓 5 = 7
𝑓 6 = 3
𝑓 7 = 8
𝑓 8 = 4

ADDITION AND MULTIPLICATION IN ℤJ

Note: No repeats!  Why?

The map g: ℤq → ℤq defined by g a = 2a mod 9
satisfies

𝑔 𝑓 𝑎 = 2 + 5 + 𝑎 mod 9
= [1 + 𝑎 mod 9]

= 𝑎.
That means f is a one-to-one function.
Since 2 + 5 mod 9 = 1, we say that 2 is the 
multiplicative inverse of 5 mod 9.  We write:

2 = 5v* mod 9.



Let 𝑓: ℤq → ℤq be the function defined by 𝑓 𝑎 = [ 3𝑎 𝑚𝑜𝑑 9].

𝑓 0 = 0
𝑓 1 = 3
𝑓 2 = 6
𝑓 3 = 0
𝑓 4 = 3
𝑓 5 = 6
𝑓 6 = 0
𝑓 7 = 3
𝑓 8 = 6

ADDITION AND MULTIPLICATION IN ℤJ

This is not a one-to-one function. 

Q: When is multiplication one-to-one?



Let 𝑓: {0,1,2, … } → ℤq be the function defined by 𝑓 𝑎 = [2y 𝑚𝑜𝑑 9].

𝑓 0 = 1
𝑓 1 = 2
𝑓 2 = 4
𝑓 3 = 8
𝑓 4 = 7
𝑓 5 = 5
𝑓 6 = 1
𝑓 7 = 2
𝑓 8 = 4

…

EXPONENTIATION IN ℤJ

This is a periodic function. 
𝑓 𝑎 + 6 = 𝑓(𝑎).

Repeat.



Let 𝑓: {0,1,2, … } → ℤq be the function defined by 𝑓 𝑎 = [6y 𝑚𝑜𝑑 9].

𝑓 0 = 1
𝑓 1 = 6
𝑓 2 = 0
𝑓 3 = 0
𝑓 4 = 0
𝑓 5 = 0
𝑓 6 = 0
𝑓 7 = 0
𝑓 8 = 0

…

EXPONENTIATION IN ℤJ

This is not a periodic function. 

Why is exponentiation periodic for 
some bases and not for others?



MODULAR ARITHMETIC: Proofs



A proof is a series of deductions
based on clearly stated assumptions.

Everything must be justified, unless it’s 
an assumption, or it’s obvious.

COMMENTS ABOUT PROOFS

Assumption #1

Assumption #2

Conclusion

What’s obvious?  If 
in doubt, ask.



Proposition: Let 𝑞 be a positive integer.  Let 𝑎 be an element of ℤJ, and suppose 
that 𝑎 has a multiplicative inverse in ℤJ. Then, the function 𝑓: ℤJ → ℤJ defined by

𝑓 𝑥 = [𝑎𝑥 mod 𝑞]
is a one-to-one function.

A PROPOSITION ABOUT MULTIPLICATIVE INVERSES



Proposition: Let 𝑞 be a positive integer.  Let 𝑎 be an element of ℤJ, and suppose 
that 𝑎 has a multiplicative inverse in ℤJ. Then, the function 𝑓: ℤJ → ℤJ defined by

𝑓 𝑥 = [𝑎𝑥 mod 𝑞]
is a one-to-one function.

Proof: Let 𝑥, 𝑦 be elements of ℤJ such that 𝑓 𝑥 = 𝑓 𝑦 .
Then, 

𝑎𝑥 mod 𝑞 = 𝑎𝑦 mod 𝑞 ,
and therefore,

𝑎v*𝑎𝑥 mod 𝑞 = 𝑎v*𝑎𝑦 mod 𝑞 ,
which implies (by the definition of multiplicative inverse) that 𝑥 = 𝑦.
Thus, the only way that the equation 𝑓 𝑥 = 𝑓 𝑦 can occur is if x and y are equal.  
We conclude that 𝑓 is a one-to-one function.

A PROPOSITION ABOUT MULTIPLICATIVE INVERSES



Proposition: Let 𝑞 be a positive integer.  Let 𝑎 be an element of ℤJ such that the 
function 𝑓: ℤJ → ℤJ defined by

𝑓 𝑥 = [𝑎𝑥 mod 𝑞]
is a one-to-one function.  Then, 𝑎 has a multiplicative inverse in ℤJ.

Proof: Suppose, for the sake of contradiction, that 𝑎 does not have a multiplicative 
inverse.

Then, there is no 𝑥 such that 𝑓 𝑥 = 1. But, this means that the function 𝑓 maps ℤJ
(which has 𝑞 elements) into the set

0,2,3,4,5,6, …𝑞 − 1 ,

which has only (𝑞 − 1) elements.
Since f is a one-to-one function, this is a contradiction.  We conclude that 𝑎 must 
have a multiplicative inverse in ℤJ.

ANOTHER PROPOSITION ABOUT MULTIPLICATIVE INVERSES



A FUNDAMENTAL PROPOSITION

Question: Which elements of ℤJ have multiplicative inverses?  

The next proposition will eventually help us to answer that question.

More terminology:
We say that one integer 𝑛 divides another integer 𝑚 if there exists an integer c such	
that	𝑚 = 𝑛𝑐.
If 𝑎, 𝑏 are positive integers, then the greatest common divisor of 𝑎, 𝑏 (denoted 
“gcd(𝑎, 𝑏)”) is the largest integer that divides both.



Proposition: Let 𝑎, 𝑏 be positive integers.  Then, there exist integers 𝑥, 𝑦 such that
𝑎𝑥 + 𝑏𝑦 = gcd 𝑎, 𝑏 .

Proof: Let 𝑑 be the smallest positive integer in the set S = 𝑎𝑥 + 𝑏𝑦 𝑥, 𝑦 ∈ ℤ}.
Let 𝑟 = 𝑎 mod 𝑑 .  Then, 𝑎 = 𝑛𝑑 + 𝑟 for some 𝑛 ∈ ℤ.
Since 𝑑 = 𝑎𝑥 + 𝑏𝑦, we have

𝑟 = 𝑎 − 𝑛 𝑎𝑥 + 𝑏𝑦 = 𝑎 1 − 𝑛𝑥 − 𝑏(𝑛𝑦),
which means that 𝑟 is in 𝑆.
Since 0 ≤ 𝑟 < 𝑑 and we assumed that 𝑑 is the smallest positive element of S, we 
conclude that 𝑟 = 0 and thus 𝑑 divides 𝑎.  Similar reasoning shows that 𝑑 divides 𝑏.

Therefore, 𝑑 is a common divisor of 𝑎, 𝑏.
On the other hand, 𝑑 must be divisible by gcd 𝑎, 𝑏 (since gcd 𝑎, 𝑏 divides every 
element of 𝑆), and so 𝑑 ≥ gcd 𝑎, 𝑏 .  We conclude that 𝑑 is itself the greatest 
common divisor of 𝑎, 𝑏.  This completes the proof.

A FUNDAMENTAL PROPOSITION



Corollary: Let 𝑞 be a positive integer.   Let 𝑎 ∈ ℤJ be such that 
gcd 𝑎, 𝑞 = 1.

Then, 𝑎 has a multiplicative inverse in ℤJ.
Proof: By the previous proposition, find 𝑥, 𝑦 ∈ ℤ such that

𝑎𝑥 + 𝑞𝑦 = 1.
Then,

𝑎𝑥 = 1mod 𝑞.

(Exercise: Prove the converse of this statement.)

A CRITERION FOR MULTIPLICATIVE INVERSES



We consider an operation to be efficient if it takes time that is polynomial in the 
length of its input.

(If the input is a sequence of integers, then its length is, approximately, the number 
of bits needed to represent those integers in base 2.)

So, addition is efficient:

So are multiplication and mod.
Can multiplicative inverses be computed efficiently?

Yes – Euclid’s algorithm.  See appendix B.1.2.

COMMENTS ABOUT COMPUTATION

1 1 1 0 1 1 0 0 0 1
+ 1 0 0 0 0 1 0 1 1 0

1 0 1 1 1 0 0 0 1 1 1



SUMMING UP

We reviewed the concept of public-key cryptography.

We did experiments with modular arithmetic (ℤJ) and noted patterns.

We did some model proofs dealing with the multiplicative structure 
of ℤJ.

Coming up: We’ll look more at the exponential function for ℤJ.


