MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu)
Guest instructor: Carl Miller (camiller@umd.edu), ATL 3100K
Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Current readings:
Feb 25: pp. 285-297

Feb 27: pp. 302-324 (skip
subsections 8.2.2 and 8.2.5)

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/

Piazza: piazza.com/umd/spring2020/cmsc456
ELMS: active, slides and reading posted there, homework 3 due midnight Thursday.
Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

* Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);

* Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

* Chen Bai (cbail@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL - inside JQl)

* Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL - inside JQl)


http://umd.edu
http://umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/

RECAP: Secret-key vs. Public-key cryptography

A MAC (Message Authentication Code) is an example of secret-key cryptography.

Alice uses the secret key k to authenticate a message, which is then verified by Bob.

Limitations:
- Alice & Bob have to find a way to exchange the key k secretly.

- Any party that can verify an authentication code can also forge one!



RECAP: Secret-key vs. Public-key cryptography

In public-key cryptography, Alice creates a public key (pk) and a secret key (sk).

Bob
pk

—

The public key is broadcast - anyone can know it.

Desired properties:

- Alice can sign a message in such way that her signature can be verified, but not forged, using pk.

- Anyone who has pk can encrypt, but not decrypt, a message to Alice.

We always want to make our protocol computationally easy to carry out, and computationally difficult for
an adversary to break.




COMPUTATIONALLY DIFFICULT PROBLEMS

Classical (non-quantum) cryptography relies on the assumption that certain computational problems are
hard.

Example from February 13t: Collision-resistance for keyed hash-function.

X x'
y
We assume that, given randomly chosen s, it is hard to find a collision for #.

Properties of this problem:
- It is easy to describe. (Just specify the hash function - e.g., SHA3.)
- It is easy to check a valid answer.

- We believe that it is hard to find a valid answer.



COMPUTATIONALLY DIFFICULT PROBLEMS

How about factoring numbers?

Problem: Suppose that n is a positive integer (expressed as a string of bits). Express n as

n=py- Pz P03 " Prs
where each p; is prime (i.e., has no factors other than 1 and itself).

It is easy to check a factorization (in time less than a polynomial function of the number of bits).

However, no polynomial-time, non-quantum algorithm for factoring numbers is currently known.

The Plan:

1. Do a detailed study of some basic number theory.

2. Build a public-key cryptosystem based on the hardness of factoring.







ARITHMETIC: THE BEGINNING

Let Z denote the set of all integers.

Z=1{..,-2,-1,0,123,..}

For any n,q € Z with g # 0, the expression “Consider thyself to be dead,
and to have completed thy
[Tl mod q] life up to the pr_esent time;
and live according to nature
the remainder which
denotes the remainder of n after division by gq. is allowed thee.”

- Marcus Aurelius

(Always, 0 < [nmod q] < q.)

Examples: [2459 mod 100] = 59.
[(—4) mod 7] = 3.



ARITHMETIC: THE BEGINNING

Let Z, denote the set.

Z, ={0,123,..,q — 1}

Forany a, b € Z;, the elements

[(a + b) mod q] . .
[(a- b) mod q] Alternative notation:
If n,m are integers, then
are also elements of Z,. n =mmod q

means
[n mod q] = [m mod q].

Example: [(31-8) mod 100] = [248 mod 100] = 48.



ARITHMETIC: THE BEGINNING

Also, for any a € Z; and n > 0, the integer
[a™ mod q]

is an element of Lyg.

Trick: When carrying out multiple operations, you can mod out as you go.

[(2:3:4-4)mod 5]
= [(6-16) mod 5]
= [(1-1) mod 5]

=1



TWO EXERCISES (no calculators!)

#1: Compute [(21 - 33 - 495 - 433) mod 10].

[(21-33 - 495 - 433) mod 10]
=[(1-3+5:3)mod 10]
=[(45) mod 10] = 5.

#2: Compute [(21°1) mod 7].
(2! mod 7)) = (2,4,1,2,4,1,2,4,1 ...)

The 101st term in this sequence is 4.

To show this answer more formally:
[21% mod 7] = [2%? - 22 mod 7] = [23733 - 22 mod 7]
= [(8)33 -4 mod 7] =[133 -4 mod 7] = 4.



ADDITION AND MULTIPLICATION IN Z,,

Let f: Zg = Zg be the function defined by f(a) = [(a + 4) mod 9].

f(0) =4
f() =5
f2)=6
f3)=7
f4) =8
f(5) =0
f(6) =1
f(7) =2
f(8) =3



ADDITION AND MULTIPLICATION IN Z,,

Let f: Zg = Zg be the function defined by f(a) = [(a + 5) mod 9].

f(0) =5
f) =6
f2)=7
f(3) =8
f4) =0
f(5) =1
f(6) =2
f(7) =3
f8) =4



ADDITION AND MULTIPLICATION IN Z,,

Let f: Zg » Zg be the function defined by f(a) = [(4a) mod 9].

f(0) =0
f) =4
f(2)=8
f(3)=3
f4) =7
f(5) =2
f(6) =6
f(7) =1
f@8) =5



ADDITION AND MULTIPLICATION IN Z,,

Let f: Zg » Zg be the function defined by f(a) = [(5a) mod 9].

f(0) =0
f() =5
f(2)=1
f(3) =6
f(4) =2
fG5) =7
f(6) =3
f(7)=8
f8) =4

Note: No repeats! Why?

The map g:Zg —» Z4 defined by g(a) = [(2a) mod 9]

g(f(a)) =[2:5-amod9]

satisfies

= [1-a mod 9]
= a.

That means f is a one-to-one function.

Since [2 - 5mod 9] = 1, we say that 2 is the

multiplicative inverse of 5 mod 9. We write:
2 =5"1mod9.



ADDITION AND MULTIPLICATION IN Z,,

Let f: Zg — Zg be the function defined by f(a) = [(3a) mod 9].

f(0)=0

f(=3

f(2) =6 This is not a one-to-one function.
f3)=0

f(4) =3 Q: When is multiplication one-to-one?
fG)=6

f6)=0

f(7)=3

f8 =6



EXPONENTIATION IN Z,

Let £:{0,1,2,...} = Zq be the function defined by f(a) = [2% mod 9].

f0)=1

fQ) =2 This is a periodic function.
f2)=4 f(a+6)=f(a).
f(3)=8

f4)=7
f(B)=5
f(6) =1 4= Repeat.
f(7)=2
f(8) =4




EXPONENTIATION IN Z,

Let f:{0,1,2, ...} = Zg be the function defined by f(a) = [6% mod 9].

f(0) =1

f()=6 This is noet a periodic function.
f(2)=0

f3)=0 Why is exponentiation periodic for
f(4)=0 some bases and not for others?
f(5) =0

f(6)=0

f(7)=0

£(8) =0






COMMENTS ABOUT PROOFS

A proof is a series of deductions
based on clearly stated assumptions.

Conclusion

Everything must be justified, unless it's
an assumption, or it's obvious.

What's obvious? If :T D
in doubt, ask. / /

Assumption #1

|

Assumption #2



A PROPOSITION ABOUT MULTIPLICATIVE INVERSES

Proposition: Let g be a positive integer. Let a be an element of Z,, and suppose
that a has a multiplicative inverse in Z,. Then, the function f:Z, — Z, defined by

f(x) = [ax mod q]

is a one-to-one function.
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A PROPOSITION ABOUT MULTIPLICATIVE INVERSES

Proposition: Let g be a positive integer. Let a be an element of Z,, and suppose
that a has a multiplicative inverse in Z,. Then, the function f:Z, — Z, defined by

f(x) = [ax mod q]
is a one-to-one function.

Proof: Let x,y be elements of Z; such that f(x) = f ().

Then,
lax mod q] = [ay mod q],

and therefore,

1

[a~tax mod q] = [a~tay mod q],

which implies (by the definition of multiplicative inverse) that x = y.

Thus, the only way that the equation f(x) = f(y) can occur is if x and y are equal.
We conclude that f is a one-to-one function.



ANOTHER PROPOSITION ABOUT MULTIPLICATIVE INVERSES

Proposition: Let g be a positive integer. Let a be an element of Z; such that the
function f: Z, — Z, defined by
f(x) = [ax mod q]

is a one-to-one function. Then, a has a multiplicative inverse in Z,.

Proof: Suppose, for the sake of contradiction, that a does not have a multiplicative
inverse.

Then, there is no x such that f(x) = 1. But, this means that the function f mapsZ,
(which has g elements) into the set

{0,2,3,4,5,6,..q — 1},
which has only (g — 1) elements.

Since f is a one-to-one function, this is a contradiction. We conclude that a must
have a multiplicative inverse in Zj. []



A FUNDAMENTAL PROPOSITION

Question: Which elements of Z; have multiplicative inverses?

The next proposition will eventually help us to answer that question.

More terminology:

We say that one integer n divides another integer m if there exists an integer c such
that m = nc.

If a, b are positive integers, then the greatest common divisor of a, b (denoted
“gcd(a, b)”) is the largest integer that divides both.



A FUNDAMENTAL PROPOSITION

Proposition: Let a, b be positive integers. Then, there exist integers x, y such that
ax + by = gcd(a, b).

Proof: Let d be the smallest positive integer in the set S = {ax + by | x,y € Z}.
Let r = [amod d]. Then, a = nd + r forsome n € Z.
Since d = ax + by, we have
r=a—n(ax + by) = a(1l —nx) — b(ny),
which means thatrisin S.

Since 0 < r < d and we assumed that d is the smallest positive element of S, we
conclude that r = 0 and thus d divides a. Similar reasoning shows that d divides b.

Therefore, d is a common divisor of a, b.

On the other hand, d must be divisible by gcd(a, b) (since gcd(a, b) divides every
element of §), and so d = gcd(a, b). We conclude that d is itself the greatest
common divisor of a, b. This completes the proof. []



A CRITERION FOR MULTIPLICATIVE INVERSES

Corollary: Let g be a positive integer. Leta € Z,; be such that
gcd(a,q) = 1.

Then, a has a multiplicative inverse in Z,.

Proof: By the previous proposition, find x,y € Z such that
ax +qy = 1.

Then,
ax = 1 mod q.

(Exercise: Prove the converse of this statement.)



COMMENTS ABOUT COMPUTATION

We consider an operation to be efficient if it takes time that is polynomial in the
length of its input.

(If the input is a sequence of integers, then its length is, approximately, the number
of bits needed to represent those integers in base 2.)

So, addition is efficient:

1110110001
+1000010110

10111000111

So are multiplication and mod.
Can multiplicative inverses be computed efficiently?
Yes - Euclid’s algorithm. See appendix B.1.2.



SUMMING UP

We reviewed the concept of public-key cryptography.
We did experiments with modular arithmetic (Z;) and noted patterns.

We did some model proofs dealing with the multiplicative structure
of Z,,.
q

Coming up: We'll look more at the exponential function for Z,.



