MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu) Guest instructor: Carl Miller (camiller@umd.edu), ATL 3100K Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there, **homework 3 due midnight Thursday.**

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

- Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);
- Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

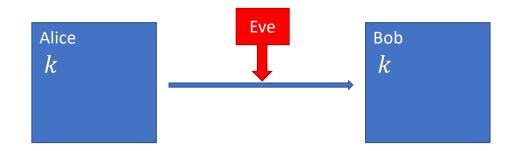
- Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL inside JQI)
- Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL inside JQI)

Current readings: **Feb 25:** pp. 285-297

Feb 27: pp. 302-324 (skip subsections 8.2.2 and 8.2.5)

RECAP: Secret-key vs. Public-key cryptography

A MAC (Message Authentication Code) is an example of **secret-key cryptography**.



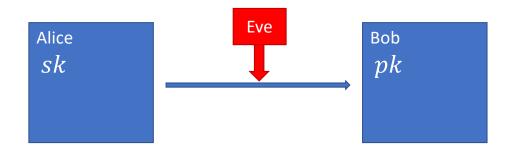
Alice uses the secret key **k** to authenticate a message, which is then verified by Bob.

Limitations:

- Alice & Bob have to find a way to exchange the key **k** secretly.
- Any party that can verify an authentication code can also forge one!

RECAP: Secret-key vs. Public-key cryptography

In **public-key cryptography**, Alice creates a public key (*pk*) and a secret key (*sk*).



The public key is broadcast - anyone can know it.

Desired properties:

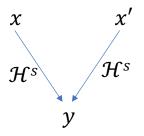
- Alice can sign a message in such way that her signature can be verified, **but not forged,** using *pk*.
- Anyone who has *pk* can encrypt, **but not decrypt**, a message to Alice.

We always want to make our protocol computationally easy to carry out, and computationally difficult for an adversary to break.

COMPUTATIONALLY DIFFICULT PROBLEMS

Classical (non-quantum) cryptography relies on the assumption that certain computational problems are hard.

Example from February 13th: **Collision-resistance for keyed hash-function.**



We assume that, given randomly chosen s, it is hard to find a collision for \mathcal{H}^s .

Properties of this problem:

- It is easy to **describe**. (Just specify the hash function e.g., SHA3.)
- It is easy to **check** a valid answer.
- We believe that it is hard to **find** a valid answer.

COMPUTATIONALLY DIFFICULT PROBLEMS

How about factoring numbers?

Problem: Suppose that n is a positive integer (expressed as a string of bits). Express n as

 $n = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_r,$

where each p_i is prime (i.e., has no factors other than 1 and itself).

It is easy to check a factorization (in time less than a polynomial function of the number of bits). However, no polynomial-time, non-quantum algorithm for factoring numbers is currently known.

The Plan:

- 1. Do a detailed study of some basic number theory.
- 2. Build a public-key cryptosystem based on the hardness of factoring.

MODULAR ARITHMETIC: Notation & Examples

ARITHMETIC: THE BEGINNING

Let $\ensuremath{\mathbb{Z}}$ denote the set of all integers.

 $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, 3, \dots\}$

For any $n, q \in \mathbb{Z}$ with $q \neq 0$, the expression

 $[n \mod q]$

denotes the remainder of n after division by q. (Always, $0 \le [n \mod q] < q$.)

Examples: $[2459 \mod 100] = 59.$ $[(-4) \mod 7] = 3.$ "Consider thyself to be dead, and to have completed thy life up to the present time; and live according to nature the **remainder** which is allowed thee." - Marcus Aurelius

ARITHMETIC: THE BEGINNING

Let \mathbb{Z}_q denote the set.

$$\mathbb{Z}_q = \{0, 1, 2, 3, \dots, q-1\}$$

For any $a, b \in \mathbb{Z}_q$, the elements

 $[(a+b) \mod q]$ $[(a \cdot b) \mod q]$

are also elements of \mathbb{Z}_q .

Example: $[(31 \cdot 8) \mod 100] = [248 \mod 100] = 48.$

Alternative notation: If n, m are integers, then $n = m \mod q$ means $[n \mod q] = [m \mod q].$

ARITHMETIC: THE BEGINNING

Also, for any $a \in \mathbb{Z}_q$ and n > 0, the integer $[a^n \mod q]$ is an element of \mathbb{Z}_q .

Trick: When carrying out multiple operations, you can mod out as you go.

$$[(2 \cdot 3 \cdot 4 \cdot 4) \mod 5] = [(6 \cdot 16) \mod 5] = [(1 \cdot 1) \mod 5] = \mathbf{1}$$

TWO EXERCISES (no calculators!)

#1: Compute [(21 · 33 · 495 · 433) mod 10].

 $[(21 \cdot 33 \cdot 495 \cdot 433) \mod 10]$ = [(1 \cdot 3 \cdot 5 \cdot 3) \mod 10] =[(45) \mod 10] = **5**.

#2: Compute [(2¹⁰¹) mod 7].

 $([2^i \mod 7]) = (2,4,1,2,4,1,2,4,1...)$ The 101st term in this sequence is **4**.

To show this answer more formally: $[2^{101} \mod 7] = [2^{99} \cdot 2^2 \mod 7] = [2^{3 \cdot 33} \cdot 2^2 \mod 7]$ $= [(8)^{33} \cdot 4 \mod 7] = [1^{33} \cdot 4 \mod 7] = 4.$

Let $f: \mathbb{Z}_9 \to \mathbb{Z}_9$ be the function defined by $f(a) = [(a + 4) \mod 9]$.

f(0) = 4 f(1) = 5 f(2) = 6 f(3) = 7 f(4) = 8 f(5) = 0 f(6) = 1 f(7) = 2f(8) = 3

Let $f: \mathbb{Z}_9 \to \mathbb{Z}_9$ be the function defined by $f(a) = [(a + 5) \mod 9]$.

f(0) = 5 f(1) = 6 f(2) = 7 f(3) = 8 f(4) = 0 f(5) = 1 f(6) = 2 f(6) = 2 f(7) = 3f(8) = 4

Let $f: \mathbb{Z}_9 \to \mathbb{Z}_9$ be the function defined by $f(a) = [(4a) \mod 9]$.

f(0) = 0 f(1) = 4 f(2) = 8 f(3) = 3 f(4) = 7 f(5) = 2 f(6) = 6 f(7) = 1f(8) = 5

Let $f: \mathbb{Z}_9 \to \mathbb{Z}_9$ be the function defined by $f(a) = [(5a) \mod 9]$.

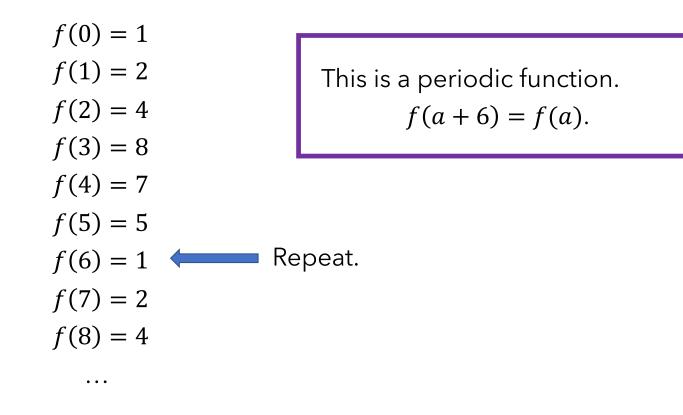
f(0) = 0	Note: No repeats! Why?
f(1) = 5	
f(2) = 1	The map g: $\mathbb{Z}_9 \to \mathbb{Z}_9$ defined by g(a) = [(2a) mod 9]
f(3) = 6	satisfies
f(4) = 2	$g(f(a)) = [2 \cdot 5 \cdot a \mod 9]$
f(5) = 7	$= [1 \cdot a \mod 9]$ $= a.$
f(6) = 3	That means f is a one-to-one function .
f(7) = 8	Since $[2 \cdot 5 \mod 9] = 1$, we say that 2 is the
f(8) = 4	multiplicative inverse of 5 mod 9. We write: $2 = 5^{-1} \mod 9$.

Let $f: \mathbb{Z}_9 \to \mathbb{Z}_9$ be the function defined by $f(a) = [(3a) \mod 9]$.

f(0) = 0	
f(1) = 3 f(2) = 6	This is <u>not</u> a one-to-one function.
f(3) = 0	
f(4) = 3	Q: When is multiplication one-to-one?
f(5) = 6	
f(6) = 0	
f(7) = 3	
f(8) = 6	

EXPONENTIATION IN \mathbb{Z}_q

Let $f: \{0,1,2,...\} \rightarrow \mathbb{Z}_9$ be the function defined by $f(a) = [2^a \mod 9]$.



EXPONENTIATION IN \mathbb{Z}_q

Let $f: \{0,1,2,...\} \rightarrow \mathbb{Z}_9$ be the function defined by $f(a) = [6^a \mod 9]$.

f(0) = 1
f(1) = 6
f(2) = 0
f(3) = 0
f(4) = 0
f(5) = 0
f(6) = 0
f(7) = 0
f(8) = 0

. . .

This is **not** a periodic function.

Why is exponentiation periodic for some bases and not for others?

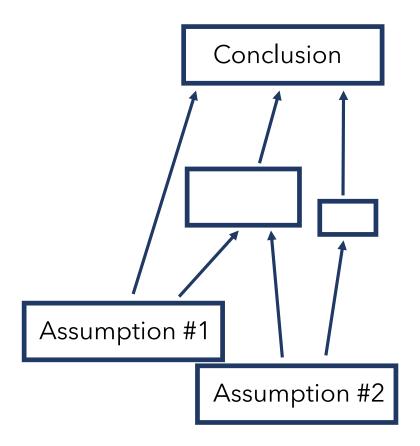
MODULAR ARITHMETIC: Proofs

COMMENTS ABOUT PROOFS

A proof is a series of **deductions** based on clearly stated **assumptions**.

Everything must be justified, unless it's an assumption, or it's obvious.

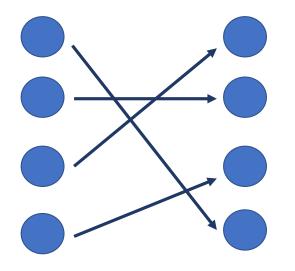
What's obvious? If in doubt, ask.



A PROPOSITION ABOUT MULTIPLICATIVE INVERSES

Proposition: Let q be a positive integer. Let a be an element of \mathbb{Z}_q , and suppose that a has a multiplicative inverse in \mathbb{Z}_q . Then, the function $f: \mathbb{Z}_q \to \mathbb{Z}_q$ defined by $f(x) = [ax \mod q]$

is a one-to-one function.



A PROPOSITION ABOUT MULTIPLICATIVE INVERSES

Proposition: Let q be a positive integer. Let a be an element of \mathbb{Z}_q , and suppose that a has a multiplicative inverse in \mathbb{Z}_q . Then, the function $f: \mathbb{Z}_q \to \mathbb{Z}_q$ defined by $f(x) = [ax \mod q]$

is a one-to-one function.

Proof: Let x, y be elements of \mathbb{Z}_q such that f(x) = f(y). Then, $[ax \mod q] = [ay \mod q],$

 $[a^{-1}ax \bmod q] = [a^{-1}ay \bmod q],$

which implies (by the definition of multiplicative inverse) that x = y.

Thus, the only way that the equation f(x) = f(y) can occur is if x and y are equal. We conclude that f is a one-to-one function.

ANOTHER PROPOSITION ABOUT MULTIPLICATIVE INVERSES

Proposition: Let q be a positive integer. Let a be an element of \mathbb{Z}_q such that the function $f: \mathbb{Z}_q \to \mathbb{Z}_q$ defined by

$$f(x) = [ax \bmod q]$$

is a one-to-one function. Then, a has a multiplicative inverse in \mathbb{Z}_q .

Proof: Suppose, for the sake of contradiction, that *a* does **not** have a multiplicative inverse.

Then, there is no x such that f(x) = 1. But, this means that the function f maps \mathbb{Z}_q (which has q elements) into the set

$$\{0,2,3,4,5,6,\dots q-1\},\$$

which has only (q - 1) elements.

Since f is a one-to-one function, this is a contradiction. We conclude that a must have a multiplicative inverse in \mathbb{Z}_q .

A FUNDAMENTAL PROPOSITION

Question: Which elements of \mathbb{Z}_q have multiplicative inverses?

The next proposition will eventually help us to answer that question.

More terminology:

We say that one integer n **divides** another integer m if there exists an integer c such that m = nc.

If a, b are positive integers, then the **greatest common divisor** of a, b (denoted "gcd(a, b)") is the largest integer that divides both.

A FUNDAMENTAL PROPOSITION

Proposition: Let *a*, *b* be positive integers. Then, there exist integers *x*, *y* such that ax + by = gcd(a, b).

Proof: Let *d* be the smallest positive integer in the set $S = \{ax + by \mid x, y \in \mathbb{Z}\}$. Let $r = [a \mod d]$. Then, a = nd + r for some $n \in \mathbb{Z}$. Since d = ax + by, we have

$$r = a - n(ax + by) = a(1 - nx) - b(ny),$$

which means that r is in S.

Since $0 \le r < d$ and we assumed that *d* is the smallest positive element of S, we conclude that r = 0 and thus *d* divides *a*. Similar reasoning shows that *d* divides *b*.

Therefore, d is a common divisor of a, b.

On the other hand, d must be divisible by gcd(a, b) (since gcd(a, b) divides every element of S), and so $d \ge gcd(a, b)$. We conclude that d is itself the greatest common divisor of a, b. This completes the proof.

A CRITERION FOR MULTIPLICATIVE INVERSES

Corollary: Let q be a positive integer. Let $a \in \mathbb{Z}_q$ be such that gcd(a,q) = 1. Then, a has a multiplicative inverse in \mathbb{Z}_q . **Proof:** By the previous proposition, find $x, y \in \mathbb{Z}$ such that ax + qy = 1. Then,

 $ax = 1 \mod q$.

(Exercise: Prove the converse of this statement.)

COMMENTS ABOUT COMPUTATION

We consider an operation to be efficient if it takes time that is polynomial in the **length** of its input.

(If the input is a sequence of integers, then its length is, approximately, the number of bits needed to represent those integers in base 2.)

So, addition is efficient:

 $\begin{array}{c}1\;1\;1\;0\;1\;1\;0\;0\;0\;1\\+\;1\;0\;0\;0\;0\;1\;0\;1\;1\;0\end{array}$

$1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1$

So are multiplication and mod.

Can multiplicative inverses be computed efficiently?

Yes – Euclid's algorithm. See appendix B.1.2.

SUMMING UP

We reviewed the concept of **public-key cryptography.**

We did experiments with **modular arithmetic** (\mathbb{Z}_q) and noted patterns.

We did some model proofs dealing with the **multiplicative structure** of \mathbb{Z}_q .

Coming up: We'll look more at the exponential function for \mathbb{Z}_q .