
MATH/CMSC 456 :: UPDATED COURSE INFO

Instructor: Gorjan Alagic (galagic@umd.edu)

Guest instructor: Carl Miller (camiller@umd.edu), ATL 3100K

Textbook: Introduction to Modern Cryptography, Katz and Lindell;

Webpage: alagic.org/cmsc-456-cryptography-spring-2020/

Piazza: piazza.com/umd/spring2020/cmsc456

ELMS: active, slides and reading posted there.

Gradescope: active, access through ELMS.

TAs (Our spot: shared open area across from AVW 4166)

• Elijah Grubb (egrubb@cs.umd.edu) 11am-12pm TuTh (AVW);

• Justin Hontz (jhontz@terpmail.umd.edu) 1pm-2pm MW (AVW);

Additional help:

• Chen Bai (cbai1@terpmail.umd.edu) 3:30-5:30pm Tu (2115 ATL – inside JQI)

• Bibhusa Rawal (bibhusa@terpmail.umd.edu) 3:30-5:30pm Th (2115 ATL – inside JQI)

Homework 4 will be assigned 
next week, and due March 12.

http://umd.edu
http://umd.edu
http://www.alagic.org/cmsc-456-cryptography-spring-2020/


RECAP: Crypto and Arithmetic

Classical crypto is based on the hardness of certain computational problems.

We want to build cryptosystems out of hard arithmetic problems.

We studied the basics of modular arithmetic.

ℤ" = the set of remainders mod q.

Arithmetic is performed on ℤ" by always taking remainder mod q.

We asserted that all of the following can be done efficiently in ℤ":

• Addition

• Multiplication

• Computing multiplicative (and additive) inverses.



PLAN FOR TODAY

1. Exhibit some needed efficient algorithms for arithmetic (exponentiation, and 
Euclid’s algorithm).

2. Study the behavior of the exponential function mod q.

3. Construct a toy cryptosystem.

Last time we talked about the hardness of the factoring problem:

𝑛 = 𝑝& ' 𝑝( ' 𝑝) ' ⋯ ' 𝑝+

We are going to base our toy cryptosystem on a different, closely related 
problem: inverting the exponential function mod n.



SOME EFFICIENT ALGORITHMS FOR ARITHMETIC IN ℤ"
(APPENDIX B)



Let ℤ" denote the set.
ℤ" = 0,1,2,3, … , 𝑞 − 1

For any 𝑎, 𝑏 ∈ ℤ", the elements
[(𝑎 + 𝑏) mod 𝑞]
[ 𝑎 ' 𝑏 mod 𝑞]

are also elements of ℤ".  

For any 𝑎 ∈ ℤ" and 𝑛 ≥ 0, the integer
[𝑎@ mod 𝑞]

is an element of ℤ".

MODULAR ARITHMETIC (Review) 



How do we compute [𝑎@ mod 𝑞]?

Attempt #1:

Simply compute [𝑎A mod 𝑞] for 𝑖 = 1,2,3, …𝑛.

That takes time at least exponential in the length (# of bits) of n.  Too long.

Attempt #2:

Compute [𝑎A mod 𝑞] for 𝑖 = 1,2,3, … until we encounter a repeat.  Extrapolate.

That could take time exponential in the length of q.  Also too long.

ALGORITHM FOR EXPONENTIATION



How do we compute [𝑎@ mod 𝑞]?

Attempt #3:
Write n in base 2:

𝑛 = 𝑏+𝑏+C&𝑏+C( …𝑏&𝑏D (

Compute (by repeated squaring):

𝑎( mod 𝑞 , 𝑎E mod 𝑞 , 𝑎F mod 𝑞 ,…, 𝑎((G) mod 𝑞
Compute:

𝑎&'HI𝑎('HJ𝑎E'HK ' ⋯ ' 𝑎(GHG mod 𝑞
= 𝑎&'HIL('HJLE'HKL⋯L(GHG mod 𝑞

= [𝑎@ mod 𝑞]
This is efficient!

ALGORITHM FOR EXPONENTIATION



Example:

Let 𝑎 = 2, 𝑛 = 73, 𝑞 = 9.

Then,
𝑛 = 1001001 (

By squaring,
𝑎( mod 𝑞 = 4, 𝑎E mod 𝑞 = 7, 𝑎F mod 𝑞 = 4, 𝑎&P mod 𝑞 = 7,…

Compute:
[𝑎@ mod 𝑞]

= 𝑎&𝑎F𝑎PE mod 𝑞
= 2 ' 4 ' 7 mod 𝑞

= 𝟐.

ALGORITHM FOR EXPONENTIATION



Suppose that gcd 𝑎, 𝑞 = 1. We wish to compute 𝑎C& mod q.

Example: 𝑞 = 23, 𝑎 = 15.

1. Write down the two (obvious) equations 𝑎 ' 1 + 𝑞 ' 0 = 𝑎 and 𝑎 ' 0 + 𝑞 ' 1 = 𝑞.

2. Subtract the smallest right-hand quantity from the 2nd-smallest right-hand 
quantity.

3. Repeat step 2 until we obtain 𝑎 ' 𝑥 + 𝑞 ' 𝑦 = 1. Then, 𝑎𝑥 = 1 mod 𝑞.

15 ' 1 + 23 ' 0 = 15
15 ' 0 + 23 ' 1 = 23
15 ' −1 + 23 ' 1 = 8
15 ' 2 + 23 ' −1 = 7
15 ' (−3) + 23 ' (2) = 1

Answer: 20(=23-3), is the multiplicative inverse of 15 mod 23.

ALGORITHM FOR MULTIPLICATIVE INVERSES

Exercise: What is 
[9C& mod 23]?
Answer: 18



Question: Given [𝑎@ mod 𝑞], 𝑛, 𝑞, can we efficiently compute 𝑎?

If not … perhaps we can use exponentiation to build a cryptosystem!

EFFICIENT OPERATIONS MOD q

Efficient to 
compute?

Efficient to 
invert?

Addition YES YES

Multiplication YES YES

Exponentiation YES ????



THE BEHAVIOR OF THE EXPONENTIAL FUNCTION IN  ℤ"



What is the period of the sequence

𝑎D mod 11 , [𝑎& mod 11], [𝑎( mod 11], … ?

(Meaning, how often does it repeat?).  Answer this for 𝑎 = 2,4,5,10.

Observation: All positive integers satisfy 𝑎&D = 1 mod 11.

EXERCISE (no calculators)



When we know that

𝑎[ mod 𝑞 = 1,

inverting the map 𝑓 𝑎 = 𝑎@ mod 𝑞 may become easy.

If 𝑚 = 𝑛C& mod y, then let 𝑔 𝑎 = 𝑎` mod 𝑞 .  Then,

𝑔 𝑓 𝑎 = 𝑎`@ = 𝑎H[L& = 𝑎& 𝑚𝑜𝑑 𝑞

(for some positive integer b)!

When can we compute such a y?

AN OBSERVATION



Recall that a positive integer n > 1 is prime if it has no factors other than 1 and 
itself.

(Example: q=11 is prime!)

This is Fermat’s Little Theorem.  How can we prove this?

PRIME MODULI

Theorem: If q is prime, then for any 𝑎 ∈ 1,2, … , 𝑞 − 1 ,
𝑎"C& = 1 mod 𝑞.



PRIME MODULI

Theorem: If q is prime, then for any 𝑎 ∈ 1,2, … , 𝑞 − 1 ,
𝑎"C& = 1 mod 𝑞.

Lemma 1: The map h: 1,2, … , 𝑞 − 1 → {1,2, … , 𝑞 − 1} given by
h 𝑥 = [𝑎𝑥 mod 𝑞]

is one-to-one and onto.

Proof of Lemma 1: Since q is prime, gcd 𝑎, 𝑞 = 1.  Thus, by a result from the 
previous lecture, 𝑎 has a multiplicative inverse mod q.

Let g: 1,2, … , 𝑞 − 1 → 1,2, … , 𝑞 − 1 be defined by

g 𝑥 = [𝑎C&𝑥 mod 𝑞].
Then 𝑔 ℎ 𝑥 = ℎ 𝑔 𝑥 = 𝑥, and so we conclude that h is one-to-one and onto.



PRIME MODULI

Theorem: If q is prime, then for any 𝑎 ∈ 1,2, … , 𝑞 − 1 ,
𝑎"C& = 1 mod 𝑞.

Lemma 2: Suppose that x, y ∈ ℤ and b ∈ 1,2, … , 𝑞 − 1 are such that

𝑏𝑥 = 𝑏𝑦 mod 𝑞.

Then,

𝑥 = 𝑦 mod 𝑞.

Proof of Lemma 2: Since q is prime, gcd 𝑏, 𝑞 = 1, and 𝑏 has a multiplicative 
inverse mod q.  We have

𝑥 = 𝑏C&𝑏𝑥 = 𝑏C&𝑏𝑦 = 𝑦 mod 𝑞,
as desired.



PRIME MODULI

Theorem: If q is prime, then for any 𝑎 ∈ 1,2, … , 𝑞 − 1 ,
𝑎"C& = 1 mod 𝑞.

Proof of Theorem: Letting ℎ be the function from Lemma 1 (mult. by 𝑎), we have
1,2, … , 𝑞 − 1 = ℎ 1 , ℎ 2 ,… , ℎ 𝑞 − 1 .

Taking the products of both sets, we find that 
1 ' 2 ' ⋯ ' 𝑞 − 1 = ℎ(1) ' ℎ(2) ' ⋯ ' ℎ(𝑞 − 1)

= 𝑎 2𝑎 3𝑎 ⋯ [ 𝑞 − 1 𝑎]
= 𝑎"C& ' 1 ' 2 ' ⋯ ' 𝑞 − 1 mod 𝑞

Applying Lemma 2,

1 = 𝑎"C& mod 𝑞.



PRIME MODULI

Conclusion: If q is prime, then for any 𝑎 ∈ {1,2, … , 𝑞 − 1}, the sequence

𝑎D mod q , 𝑎& mod q , 𝑎( mod q , 𝑎) mod q ,…

is periodic, and its period is a factor of 𝑞 − 1 .



A TOY CRYPTOSYSTEM (PUBLIC-KEY ENCRYPTION)



Protocol:

1. Alice generates a random prime q and random 𝑥 ∈ {1,2, … , 𝑞 − 2}.
2. She computes 𝑦 = 𝑥C& mod 𝑞 − 1 .  (If it doesn’t exist, start over.)

3. Bob transmits ”ciphertext”  c = [𝑚k mod 𝑞].
4. Alice computes “plaintext” 𝑐[ = 𝑚k[ = 𝑚& 𝑚𝑜𝑑 𝑞.

Problem: Alice can compute y, but so can anyone else!

FIRST ATTEMPT

𝑞, 𝑥

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑚 (< 𝑞)

[𝑚k mod 𝑞]

Eve



NON-PRIME MODULUS?

Suppose that q is not prime.
We wish to prove an analogue of Fermat’s Little Theorem.

Definition: Let 𝜙(𝑞) denote the total number of elements in {1,2, … , 𝑞 − 1}
that have multiplicative inverses mod q.

Theorem: For any q>0 and any 𝑎 ∈ 1,2, … , 𝑞 − 1 ,
𝑎q(") = 1 mod 𝑞.

The proof is similar to the one for Fermat’s Little Theorem.

Exercise: 13 and 17 are prime.  What is 𝜙 13 ' 17 ?
Answer: 192.



NON-PRIME MODULUS?

Consider the case 𝑞 = 𝑟𝑠, where 𝑟, 𝑠 are prime.
• There are 𝑟 − 1 elements in {1,2, … , 𝑞 − 1} that are divisible by 𝑠.
• There are 𝑠 − 1 elements in {1,2, … , 𝑞 − 1} that are divisible by r.
• There are 0 elements in {1,2, … , 𝑞 − 1} that are divisible by both.

Therefore,
𝜙 𝑞 = rs − 1 − (r − 1) − (s − 1)

= 𝑟 − 1 𝑠 − 1 .



Protocol:

1. Alice generates random primes r,s and random 𝑥 ∈ 1,2, … , 𝜙 𝑟𝑠 − 1 .

2. She computes 𝑦 = 𝑥C& mod 𝜙(q), where 𝑞 = 𝑟𝑠.  (If it doesn’t exist, restart.)

3. Bob transmits ciphertext  c = [𝑚k mod 𝑞].
4. Alice computes “plaintext” 𝑐[ = 𝑚k[ = 𝑚& 𝑚𝑜𝑑 𝑞.

Alice knows 𝜙 𝑞 = 𝑟 − 1 𝑠 − 1 . But there’s no obvious way

for Eve (who doesn’t know r and s) to compute that quantity!

A SECOND ATTEMPT

𝑞, 𝑥

𝑚𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑚

[𝑚k mod 𝑞]

Eve

𝑞 ≔ 𝑟𝑠

This (roughly 
speaking) is RSA 
encryption.



SUMMING UP

• We developed modular arithmetic some more (including an efficient algorithm 
for exponentiation).

• We stated Fermat’s Little Theorem and discussed its implications for the 
inversion of the exponential function.

• We developed a toy version of RSA encryption, which is based on the hardness 
of inverting the exponential function.

• Next: We’ll give a more formal treatment of public-key encryption and RSA.


