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Introduction

This document contains a (rough and preliminary, work-in-progress) set of lecture notes for the
2015-2016 block 1A course on Representation Theory at the University of Copenhagen, taught
by the author. The course is divided into two parts. In Part 1, we discuss the basic theory of
representations and characters of finite groups. One could view this part of the course as having
two goals: (i.) to understand just enough theory in order to construct some of the most common
examples oneself, and (ii.) to gain a basic understanding of the group algebra and the Fourier
transform. In Part 2, we will move on to compact groups, once again with two central goals: (i.)
to understand the Peter-Weyl theorem and the crucial differences from the finite case, and (ii.) to
understand just enough Lie theory to see an example of the “theorem of the highest weight” in
action. Our part I will be based on Part I of Serre’s well-known text [4]; part II will be assembled
from parts I and II of Brian Hall’s rather accessible text [1]. In some sections, I will follow the
exposition of these texts quite closely. It’s important to remark that, throughout the course, we
will only consider representations over C.

Given the huge number of easily accessible representation theory textbooks and lecture notes,
one might question the need for these notes. I do not claim to have any special insight or method.
The aim of making these notes is simply to prepare myself for lecturing; it also helps to have a
single source from which I can tell a unified story to the students.

Instead of having a lengthy preliminary section at the beginning, I chose to spread the back-
ground material throughout the notes. I will try to introduce (or at least mention) background
material as close as possible to when it is actually required. One upside is that we can start thinking
about representations early on. A downside is that the notes might not flow as nicely.

Finally, let me describe my basic expectations regarding exercises and exams. First, there are
no exams, and your grade will be based entirely on (nearly) weekly homework sets. One could argue
at length about the advantages or drawbacks of this approach. My hope is that this structure will
result in a better absorption of the material, through practice that is both frequent and significant
in quantity. I encourage collaboration, so long as each student writes up their own solutions entirely
by themselves. All answers must be accompanied by complete and clearly explained proofs. To
be clear: a correct answer with no explanation will receive a zero score. Make sure to indicate the
points in the proof where you applied a theorem from the lectures. Keep in mind that it is difficult
to explain things without using at least some words. As in all writing, these words should almost
always come in complete sentences. For open-ended (e.g., yes/no) questions, think carefully about
what constitutes a “proof” that your response is correct. For example, in some cases the proof will
consist of a single counterexample; in that case, the counterexample should be explicit (i.e., specify
the group in question, specify the matrices or operators defining the representation in question,
and so on.)
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Chapter 1

Finite groups

1.1 Basic definitions

This section covers the following concepts, in the setting of finite groups and finite-dimensional
spaces over C. We start with a quick reminder of some needed concepts from finite groups and
vector spaces (subsection 1.1.1). We then define the following: representations (subsection 1.1.2),
subrepresentations, direct sums, and irreducibility (subsection 1.1.3), and tensor products (subsec-
tion 1.1.4). Some very basic examples are sprinkled throughout. The exercises for this Section
appear in subsection 1.1.5.

1.1.1 Preliminaries

Here, we briefly recall some very basic notions from group theory and vector spaces. Ideally, stu-
dents have been exposed to this material previously, and this will be a (very brief) refresher. If you
are already comfortable with this material, then you should skip ahead and refer back to this section
later if needed—which is likely, since we will now also fix some basic notation and conventions.

Groups. For now, all groups will be finite. Recall that a finite group is a finite set G together
with an associative operation (a map G × G → G, written (x, y) 7→ xy), a distinguished identity
element 1 (satisfying 1x = x1 = x for all x), and inverses (each x ∈ G has a unique x−1 ∈ G
satisfying xx−1 = x−1x = 1). The order |G| of the group G is simply the number of elements. If
xy = yx for all x, y ∈ G, we say that G is abelian; otherwise it is called nonabelian. A subset H of
a group G which is closed under the group operation is called a subgroup. A function f : G1 → G2

from a group G1 to another group G2 is called a homomorphism if it preserves operations, i.e., if
f(x)f(y) = f(xy) for all x, y ∈ G1. A homomorphism which is bijective is called an isomorphism;
two groups are said to be isomorphic if there exists an isomorphism from one to the other.

Describing groups can be done using so-called presentations. A presentation lists a set of
generators, together with a complete set of relations. The group is then formed by taking the set
of all possible words in the generators (just like words in an alphabet), and modding out by the
equivalence relation defined by the relations. For example, the cyclic group (of order n) is defined
by the presentation Z/nZ = 〈x : xn = 1〉. The words are made just by stringing together some
finite number of xs; two words are equivalent if the number of xs in them is equivalent modulo
n. It should be clear now that Z/nZ (as defined) has order n, and that it is isomorphic to the
integers {0, 1, . . . , n − 1} with the operation of addition modulo n. For a more complicated (and
non-abelian) example, consider the group Sn consisting of all permutations of a set of n objects, say
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6 CHAPTER 1. FINITE GROUPS

the set [n] = {1, 2, . . . , n}. It is convenient to write elements of Sn in cycle notation; for example,
the element that sends 1 to 2, 2 to 3, and 3 back to 1 (while fixing all others) is succinctly written
as (123). The element that transposes (swaps) 1 and 3 as well as 5 and 7 would be written (13)(57).
It’s not hard to see that Sn is generated by the n− 1 adjacent transpositions σj := (j j + 1). Each
transposition is its own inverse, and transpositions that affect disjoint pairs commute with each
other. As it turns out, adding one more relation is sufficient to fully characterize Sn:

Sn =
〈
σ1, σ2, . . . , σn−1 : σ2i = 1; σiσi+1σi = σi+1σiσi+1; σiσj = σjσi if |j − i| > 1

〉
.

Vector spaces. For now, all vector spaces will be finite-dimensional, with scalars the complex
numbers C. If V is such a space, then it is isomorphic to Cd for some finite d, called the dimension
of V (written dimV ). The set V is an abelian group under the operation of addition of vectors
(with identity element 0), and is closed under scaling by elements of C, which is distributive with
respect to vector addition. A subspace of V is a subset of V which is itself a vector space under
the same operations as V . A proper subspace is one which is equal to neither V nor the trivial
subspace (i.e., the set {0}.)

Given two vector spaces V and W , a map f : V →W is called a linear operator or linear map if
it satisfies f(ax+ y) = af(x) + f(y) for all a ∈ C and x, y ∈ V . A bijective linear operator is called
a linear isomorphism, or just isomorphism when the context is clear. The set of linear maps from
V to itself is denoted End(V ); the subset of End(V ) consisting of isomorphisms (or equivalently,
the invertible maps) is denoted GL(V ), and is a group under the composition operation.

Although a pure mathematician might be hesitant to do so, we will frequently and happily fix
bases for our vector spaces. Recall that a basis for V is a finite set of dimV -many vectors in V
which span V (i.e., each v ∈ V is a linear combination of them) and are linearly independent (i.e.,
none of them is a linear combination of the others). There are many consequences of choosing a
particular basis for V , but the two most crucial ones are: (i.) each vector v ∈ V is associated with
a tuple of dimV complex numbers (namely the coefficients of v in the basis expansion), and (ii.)
each linear map L ∈ End(V ) is associated to a dimV × dimV matrix (Lij) of complex numbers.
Each column (Li·) of this matrix is a vector; it is the image of the ith basis element under the linear
map L. If L,K ∈ End(V ), then the matrix of their product LK is simply the matrix product of
the matrix of L with the matrix of K. If L ∈ GL(V ), then the matrix of L is invertible, and its
inverse is again an element of GL(V ); a basis choice for V thus makes GL(V ) into a matrix group,
i.e. a group where the elements are matrices and the operation is matrix product. Of course, this
is an infinite group.

If we fix a particular basis B and then wish to change to another basis B′, this can be done via
a basis change operation. Assembling the vectors of B′ (written in the basis B) as columns results
in an invertible matrix M . To rewrite a vector v from B to B′, simply compute M−1v. To rewrite
a matrix L from B to B′, compute M−1LM .

Given two vector spaces V and W , their direct sum V ⊕ W is another vector space, whose
elements are pairs (v, w) (written v ⊕ w) with v ∈ V and w ∈ W and whose operations are
coordinatewise, i.e., v ⊕ w + v′ ⊕ w′ = (v + v′)⊕ (w + w′) and a(v ⊕ w) = av ⊕ aw. Dimension is
additive with respect to direct sum. Indeed, the direct sum of Cn and Cm is isomorphic to Cn+m.
The direct sum of vector spaces induces a direct sum operation on linear maps. For example, for
A ∈ End(V ) and B ∈ End(W ), the map A⊕B : (v⊕w) 7→ (Av⊕Bw) is an element of End(V ⊕W ).
A closely associated notion to direct sum is projection; a projection operator is a map L ∈ End(V )
which satisfies L2 = L. One can easily show that each such L decomposes V into a direct sum,
namely V = imL⊕ kerL.

Another operation on two vector spaces V and W is tensor product. The result is again a vector
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space, denoted V ⊗W , whose elements are tensors v ⊗ w, and where the operation is bilinear. In
other words, the operation is addition modulo the relations a(v ⊗ w) = (av ⊗ w) = (v ⊗ aw) and
(v⊗w)+(v⊗w′) = (v⊗(w+w′)) and (v⊗w)+(v′⊗w) = ((v+v′)⊗w). Dimension is multiplicative
with respect to tensor product. In particular, Cn ⊗ Cm is isomorphic to Cnm. Just as with direct
sum, the tensor product of vector spaces induces a tensor product operation on linear maps. For
example, for A ∈ End(V ) and B ∈ End(W ), the map A⊗B : (v ⊗ w) 7→ (Av ⊗Bw) is an element
of End(V ⊗W ).

If you lack intuition about direct sums and tensor products, I strongly encourage you to do the
following simple exercises. Don’t be afraid to work out very simple examples (e.g., in dimensions 1
and 2) to make sure you understand what’s happening. These concepts will be central to the entire
course, starting from the very first lecture.

• what is the direct sum decomposition of the plane induced by projection to the x-axis?

• pick an explicit basis for Cn and Cm; compute corresponding bases for Cn⊕Cm and Cn⊗Cm.

• continuing with the previous exercise, given basis expansions of vectors v ∈ Cn and w ∈ Cn,
how do you compute the basis expansions of v ⊕ w and v ⊗ w?

• continuing with the previous exercise, given an n×n matrix A and an m×m matrix B, how
do you compute the matrices A⊕B and A⊗B?

1.1.2 Representations

Definition 1.1.1. A representation of a finite group G is a homomorphism ρ : G→ GL(V ), for
some finite-dimensional complex vector space V .

Written explicitly, the definition means that ρ(xy) = ρ(x)ρ(y) for every x and y in G; we may say
that ρ maps the group product (on the left-hand side) to composition of linear operators (on the
right-hand side). For the sake of compactness, it is common to say “(ρ, V ) is a representation of
G” when defining representations. Once the choice of G, V , and ρ has been fixed, it is standard
to refer to both the space V and the map ρ as “representations.” In keeping with this custom, we
define the dimension (or degree) of ρ to be dimV .

Fixing a particular basis of V , we can write each operator ρ(x) explicitly as a matrix, with
matrix entries ρ(x)ij . The representation ρ thus associates to each group element an explicit matrix
(ρ(x)ij) of complex numbers, in a way that maps the group product into the matrix product. This
is sometime called a matrix representation of G. For a matrix representation, the product can be
written out explicitly in the usual way:

ρ(xy)ij =
∑
k

ρ(x)ikρ(y)kj .

From now on, we will move the subscripts closer to ρ, writing ρij(x) in place of ρ(x)ij . This notation
makes sense, since the object ρij is a sensible thing: it is a map from G to C. We will refer to this
map as a matrix entry of the representation ρ.

As with all things in mathematics, we are interested in classification. This is only feasible with
a natural notion of equivalence.

Definition 1.1.2. Two representations ρ : G → GL(V ) and σ : G → GL(W ) are isomorphic
(written ρ ∼= σ) if there exists a linear isomorphism T : V →W such that σ(g) = Tρ(g)T−1.
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Note that the existence of T already implies that V is isomorphic to W . In particular, if we chose
bases for V and W and view ρ and σ as matrix representations, then they are isomorphic precisely
when their matrices differ only by a change of basis.

Examples.

1. Following Definition 1.1.1, we see that a one-dimensional representation of a finite group G
(sometimes called a character of G) is a homomorphism from G to C×, the “circle group” of
unit-length complex numbers under multiplication. For any G, the map that assigns every
g ∈ G to the number 1 is a one-dimensional representation called the trivial representation.
Another example is the sign representation of Z/2Z = 〈x : x2 = 1〉, defined by setting 1 7→ 1
and x 7→ −1.

2. Fix any group G and a vector space V with dimV = |G|. We can then identify some
basis {ex : x ∈ G} of V with the group elements of G. Define ρ : G → GL(V ) by setting
ρ(y) : ex 7→ eyx. It’s easy to check that ρ is a representation; it’s called the (left) regular
representation of G, and we will denote it by RegG. Looking again at Z/2Z, we easily
compute the regular representation:

1 7→

[
1 0

0 1

]
and x 7→

[
0 1

1 0

]
.

3. In general, any action ofG on some finite setX also defines a representation ρ ofG. The vector
space V has a basis {ex}x∈X identified with X, and the representation is defined by the rule
g : ex 7→ egx. Such representations are called permutation representations or combinatorial
representations. The left regular representation is the special case where G acts on itself by
left-multiplication.

1.1.3 Subrepresentations, direct sums, and irreducible representations

The ability to create new representations from existing ones is crucial in the task of characterizing
all inequivalent representations. Our first tool for doing this is straightforward, and is based on the
vector space direct sum.

Definition 1.1.3. Let (ρ, V ) and (σ,W ) be representations of a group G. The representation
ρ⊕ σ : G→ GL(V ⊕W ) defined by [ρ⊕ σ](g) := ρ(g)⊕ σ(g) is called the direct sum of ρ and σ.

It should be clear that, once we fix bases for V and W , the matrices [ρ⊕σ](g) in the resulting basis
of V ⊕W are (matrix) direct sums of the matrices ρ(g) and σ(g).

It will also be useful to discover “smaller” representations sitting inside larger ones. To that
end, let (ρ, V ) be a representation of a group G, and suppose that there exists a proper ρ-invariant
subspace W of V ; that is to say, suppose that ρ(g)w ∈ W for all g ∈ G and all w ∈ W . It
is straightforward to check that the map ρW : G → GL(V ) defined by ρW (g) := ρ(g)|W defines
a representation of G; we say that ρW is a subrepresentation of ρ. We thus make the following
definitions.

Definition 1.1.4. Let (ρ, V ) and (σ,W ) be representations of G. Then (σ,W ) is a subrepresen-
tation of (ρ, V ) (sometimes written σ ≺ ρ) if there exists a ρ-invariant subspace W ′ of V such that
the restriction of ρ to W ′ is isomorphic to σ.
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Definition 1.1.5. A representation (ρ, V ) is irreducible if there are no proper ρ-invariant sub-
spaces of V .

The fact that the concept of irreducibility is of great value is apparent from the following.

Theorem 1.1.1. Every representation is a direct sum of irreducible representations.

Proof. The proof proceeds in two steps. First we show that subrepresentations have a “complement”
representation; this fact first appeared in a paper by Maschke in 1989 [2] and is thus sometimes
called Maschke’s Theorem. Then, we (actually, you) will use this fact recursively in order to break
down any given representation into irreducible summands.

Let’s prove Maschke’s Theorem. Let (ρ, V ) be a representation of G and (ρ|W ,W ) a subrep-
resentation. Pick a projection ΠW : V → W and note that V = W ⊕ ker ΠW . We would like to
show that ker ΠW is ρ-invariant, i.e., that ΠWρ(x)w′ = 0 for all x ∈ G and all w′ ∈ ker ΠW . This
would be easy if ΠW and ρ(x) commuted, but in general they do not. We can fix this problem by
symmetrizing ΠW as follows. Set

Πρ
W =

1

|G|
∑
g∈G

ρ(g)ΠWρ(g)−1 .

One easily checks (see homework) that Πρ
W is a projection operator onto W , and that it commutes

with ρ(x) for all x ∈ G. Setting W ′ = ker Πρ
W , we have that

ker Πρ
Wρ(x)w′ = ρ(x) ker Πρ

Ww
′ = ρ(x)0 = 0

i.e., W ′ is ρ-invariant. It follows that ρ = ρ|W ⊕ ρ|′W .

It remains to show that, given an arbitrary representation ρ, one can recursively apply the
above until ρ is expressed as a direct sum of irreducible representations (see homework).

Examples.

1. Consider again the left regular representation RegZ/2Z of Z/2Z = 〈x : x2 = 1〉, defined by

RegZ/2Z(1) =

[
1 0

0 1

]
and RegZ/2Z(x) =

[
0 1

1 0

]
.

It’s easy to spot an invariant vector, which defines a copy of the trivial representation:

RegZ/2Z(1)

[
1

1

]
= RegZ/2Z(x)

[
1

1

]
=

[
1

1

]

Since RegZ/2Z is two-dimensional, we can pick any vector which is linearly independent from
the above; it spans another one-dimensional representation of Z/2Z which we have already
seen:

RegZ/2Z(1)

[
1

−1

]
=

[
1

−1

]
and RegZ/2Z(x)

[
1

−1

]
= −

[
1

−1

]
.

We can thus write RegZ/2Z = χ1 ⊕ χ−1 where χ1 : x 7→ 1 is the trivial representation and
χ−1 : x 7→ −1 is the nontrivial one.
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1.1.4 Tensor products

In addition to taking direct sums, we can also form new representations from old ones by taking
tensor products. This proceeds in the expected way.

Definition 1.1.6. Let (ρ, V ) and (σ,W ) be representations of a group G. The representation
ρ⊗σ : G→ GL(V ⊗W ) defined by [ρ⊗σ](g) := ρ(g)⊗σ(g) is called the tensor product of ρ and
σ.

Recalling that (A⊗B)(C ⊗D) = (AC ⊗BD) for linear operators A,B,C,D, we can easily check
that the above really does define a representation.

[ρ⊗ σ](x)[ρ⊗ σ](y) = (ρ(x)⊗ σ(x))(ρ(y)⊗ σ(y)) = (ρ(x)ρ(y)⊗ σ(x)σ(y))

= ρ(xy)⊗ σ(xy) = [ρ⊗ σ](xy) .

Computing the matrix entries of a tensor product representation is fairly straightforward, but does
involve some bookkeeping of indices. The point is that, if we fix bases for V and W (and hence
also of V ⊗W ), then the matrices [ρ⊗ σ](x) are matrix tensor products of the matrices ρ(x) and
σ(x). If the indices i and j index basis elements of V , and the indices k and l index basis elements
of W , then the matrix entries will satisfy

[ρ⊗ σ]ik,jl = ρijσkl .

1.1.5 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. If ρ is a representation of a finite group, what is ρ(1)?

2. Is the image im(ρ) = {ρ(x) : x ∈ G} of a representation always a group?

3. Recall that the matrix entries ρij : G → C of a representation ρ (in some basis) are defined
by ρij(g) = ρ(g)ij . Are the ρij homomorphisms?

4. Write out the regular representation of S3 in explicit matrix form.

5. Let G be a group. Is the regular representation of G reducible or irreducible?

6. Let (ρ, V ) be a representation. Suppose that there exists v ∈ V such that {ρ(g)v : g ∈ G}
forms a basis of V . Prove that ρ is isomorphic to the (left) regular representation of G.

7. We defined the left regular representation in lecture. How do you think the right regular
representation is defined? Be sure to check that what you wrote down is truly a representation.
In fact, it will be a combinatorial representation. What is the group action that defines it?

8. Prove that the right regular representation is isomorphic to the left regular representation.

9. Write a complete proof of Theorem 1.1.1 (Every representation is a direct sum of irreducible
representations.) In addition to the steps proven in lecture, you will need to (a.) prove that
the symmetrized operator Πρ

W is a projection onto W which commutes with ρ(x) for all x ∈ G,
and (b.) use Maschke’s Theorem recursively to finish the proof.
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10. Write out the matrices of the representation RegZ/2Z⊗RegZ/2Z explicitly. Find (and explicitly
describe) its irreducible decomposition.

11. Please list any typos and mistakes that you found in the lecture notes and exercises so far.
Thanks!

1.2 Schur’s Lemma and Character Theory

This section contains the first basic result in the course: Schur’s Lemma. It also sets down some
basic facts about character theory, and consequences thereof (canonical decompositions, decompo-
sition of the regular representation.)

1.2.1 Preliminaries

As in the previous section, we now rapidly review a few basic concepts from outside representation
theory that will be needed for this section. First, recall that conjugation by a group element g of
some group G is the operation on G defined by

h 7→ ghg−1 .

It’s easy to show that this is an equivalence relation on G, and thus partitions G into equivalence
classes, which are called conjugacy classes. In the cyclic groups Z/nZ (and indeed all abelian
groups), the conjugacy classes are uninteresting: each group element forms a class, so that there are
|G| conjugacy classes. In the symmetric group Sn, each conjugacy class consists of all permutations
with the same cycle structure. For example, the transpositions {(a b) : 1 ≤ a < b ≤ n} form
one conjugacy class, and so do all permutations with cycle structure (a b)(c d e), and so on. In
general, cycle structures (and hence also conjugacy classes of Sn) are in bijective correspondence
with integer partitions of n.

Recall that an eigenvalue of a linear operator A is a number λ such that Av = λv for some
nonzero vector v. The vector v is called the eigenvector of A corresponding to the eigenvalue
λ. Since we are dealing with the complex field, our linear operators will always have at least
one eigenvalue (this follows from the fundamental theorem of algebra, applied to the characteristic
polynomial of the operator.) The sum of the eigenvalues of A is called the trace of A, and is denoted
Tr[A]. Given a basis, the trace is simply the sum of the diagonal elements of A, i.e. Tr[A] =

∑
iAii.

The definition based on eigenvalues is clearly basis-independent; it remains to convince yourself that
the two definitions are the same.

Given a vector space V , an inner product on V is a map 〈 · | · 〉 : V ×V → C which is conjugate-
symmetric: 〈x|y〉 = 〈y|x〉, linear in the first argument: 〈ax + y|z〉 = a〈x|z〉 + 〈y|z〉, and positive-
definite: 〈x|x〉 = 0 for x = 0 and 〈x|x〉 > 0 otherwise. Since all of our vector spaces are finite
dimensional over C, we can always fix an isomorphism between our space and Cd, and then use the
inner product

〈x|y〉 =

d∑
j=1

xjy
∗
j

for Cd.
Inner products are very useful; they allow us to think about geometrically intuitive notions like

lengths of vectors and angles between pairs of vectors, even in “unfamiliar” abstract vector spaces.
Once we have fixed an inner product, we have a notion of norm (or length) ‖v‖ =

√
|〈v|v〉| for
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all vectors. We also have a notion of orthogonality : we say that two vectors v, w are orthogonal if
〈v|w〉 = 0. This is identical to the notion of perpendicular lines in Euclidean space.

The choice of inner product also provides us with a useful operation on linear operators, called
the adjoint. Given a linear operator A, its adjoint is the unique operator A† which satisfies 〈Av|w〉 =
〈v|A†w〉 for all v, w. You should check that if A ∈ End(Cd) is given by a matrix, then the matrix of
A† is the conjugate transpose of A (i.e., the matrix you get by transposing A and then conjugating
every matrix entry). A special class of operators in GL(V ) are the so-called unitary operators.
These are invertible operators which preserve the norm and inner product, i.e. ‖Uv‖ = ‖v‖ and
〈Uv|Uw〉 = 〈v|w〉 for all v, w ∈ V . An equivalent definition is to say that U ∈ End(V ) is a unitary
operator iff U †U = 1V .

Inner products and unitary operators will come up very frequently in the course, so get used to
working with them! Here’s a few simple exercises to try for practice:

• check that all the transpositions in Sn are conjugates of each other;

• prove that the set of group elements {ex : x ∈ G} in the regular representation is an orthonor-
mal basis.

• prove that the trace is basis-independent;

• prove that the two definitions of “unitary” are equivalent;

• prove that the set of unitary operators on V forms a group, the so-called unitary group U(V );

1.2.2 Schur’s Lemma and orthogonality relations

We now come to the first basic result in the course: Schur’s Lemma, proved by Issai Schur in
1905 [3]. Schur used it to prove orthogonality of characters; we will do this in the next subsection.

Lemma 1.2.1. [Schur’s Lemma] Let (ρ, Vρ) and (σ, Vσ) be irreducible representations of a finite
group G, and let f be a linear map from Vρ to Vσ such that

f ◦ ρ(g) = σ(g) ◦ f (1.1)

for all g ∈ G. If ρ ∼= σ, then f = λ1Vρ for some λ ∈ C; otherwise f = 0.

Before we get to the proof, here’s a brief remark. Another way of stating the condition (1.1) on f
is that the following diagram commutes for every g ∈ G:

Vρ Vρ

Vσ Vσ

ρ(g)

f f

σ(g)

A map satisfying this condition is sometimes called an intertwiner of ρ and σ, or a G-equivariant
map, where it is understood that it is equivariant with respect to the G-actions on Vρ and Vσ
defined by ρ and σ. Intertwiners (and more generally, equivariant maps) crop up very frequently in
representation theory (and more generally, mathematics). Schur’s Lemma is thus a crucial result
that you should get very familiar with.
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Proof. First, an easy case: if f = 0, then we are done. So suppose f 6= 0, and consider its kernel
ker(f). Pick v ∈ ker(f), and note that

(fρ(g)) · v = (σ(g)f) · v = σ(g) · 0 = 0.

This implies that ρ(g)·v ∈ ker(f), i.e., that ker(f) is a subrepresentation of ρ. Since ρ is irreducible,
there are two possibilities: ker(f) = 0 or ker(f) = Vρ. We already assumed f 6= 0, so it must be
that ker f = 0. Next, consider w ∈ im(f) ⊂ Vσ. Let v ∈ Vρ such that f · v = w, and check that

(fρ(g)) · v = (σ(g)f) · v = σ(g) · w,

i.e., σ(g) · w is also in im(f). Hence im(f) is a subrepresentation of σ, and by irreducibility of σ
either im(f) = 0 or im(f) = Vσ. The former case is eliminated by the assumption f 6= 0.

So we now have that ker f = 0 and im(f) = Vσ. It follows that f is an isomorphism of vector
spaces, and that Vρ ∼= Vσ. The condition (1.1) now says that ρ ∼= σ. Since f 6= 0, we can pick a
nonzero eigenvalue λ of f , with eigenvector vλ. Define f ′ = f − λ1Vρ ; it’s easy to check that f ′ is
again an intertwiner of ρ with itself. Now the argument from the previous paragraph (applied to
f ′) tells us that either f ′ = 0 or ker(f ′) = 0. The latter cannot be the case, since f ′ · vλ = 0, so we
have f ′ = 0; this, in turn, implies that f = λ1Vρ .

As a first consequence of Schur’s Lemma, we will now show that the matrix entries of irre-
ducible representations are orthogonal. To this end, it will be convenient to think about uni-
tary representations; these are representations (ρ, Vρ) where every ρ(x) is a unitary operator, i.e.
ρ(x) ∈ U(Vρ) ⊂ GL(Vρ) for all x ∈ G. In fact, any representation can be turned into a unitary
representation, as follows. Let 〈 · | · 〉0 be an inner product on Vρ, and define

〈v|w〉 :=
∑
g∈G
〈ρ(g)v|ρ(g)w〉0 . (1.2)

One easily checks (see exercises) that this defines another inner product, and that each ρ(x) is a
unitary operator with respect to this new inner product. It follows that any representation can be
“unitarized”, and thus we do not lose any generality by developing all of our theory using unitary
representations only.

Another inner product space which we will discuss frequently is the group algebra CG = {f :
G→ C}. This is the space of all complex-valued functions on the group. It has dimension |G|, and
a natural inner product defined by

〈f |f ′〉G =
1

|G|
∑
g∈G

f(g)f ′(g)∗. (1.3)

We have already encountered important elements of CG: given a choice of basis for the space Vρ
of any representation ρ, we defined the “matrix entries of ρ” by

ρij : G −→ C

g 7−→ ρ(g)ij .

When taking inner products of these functions, it is important to note that ρij(g)∗ = ρji(g
−1); this

is an easy consequence of the fact that ρ(g)† = ρ(g−1), which follows from the unitarity of ρ.
As it turns out, the matrix entries of the irreducible representations of G form an orthonormal

family, in the following sense.
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Proposition 1.2.1. Let (ρ, Vρ) and (σ, Vσ) be irreducible representations of a finite group G, to-
gether with a choice of basis for both Vρ and Vσ. Then

〈ρij |σkl〉G =

1/dρ if ρ ∼= σ and i = k, j = l ;

0 otherwise.

Proof. Let M : Vσ → Vρ, and check that

M ′ :=
1

|G|
∑
g∈G

ρ(g)Mσ(g−1)

is an intertwiner, i.e., that ρ(x)M ′ = M ′σ(x). By Schur’s Lemma, if ρ 6∼= σ then M ′ = 0. In terms
of matrix entries, this means that

1

|G|
∑
g∈G

∑
a,b

ρia(g)Mabσbk(g
−1) = 0

for all i, k. Here, i and a index basis elements of Vρ while b and k index basis elements of Vσ.
Rearranging slightly, applying σbk(g

−1) = σkb(g)∗, and recalling the definition of the inner product
in (1.3), the above becomes ∑

a,b

Mab〈ρia|σkb〉G = 0 ,

again for all i, k. Recalling that M was arbitrary, we can fix some particular indices j and l and
pick Mab = δajδbl (here δts denotes the Kronecker delta, defined by δts = 1 if t = s and δts = 0
if t 6= s; in particular, M has a 1 in the j, l spot and zeroes elsewhere.) The left-hand side thus
becomes the inner product 〈ρij |σkl〉G we are interested in, and the right-hand side is always zero.
This establishes the claim of the Proposition in the case ρ 6∼= σ.

Now consider the case ρ ∼= σ, where (again by Schur’s Lemma) M ′ = λ1Vρ . To compute λ, we
compute the trace of both sides, which yields

dρλ = Tr[M ′] =
1

|G|
∑
g∈G

Tr
[
ρ(g)Mρ(g−1)

]
= Tr[M ] .

We now proceed exactly as before. We first write M ′ = λ1Vρ in terms of matrix entries.

1

|G|
∑
g∈G

∑
a,b

ρia(g)Mabρbk(g
−1) = λδak =

Tr[M ]

n
δak .

Then we rewrite this slightly to get

∑
a,b

Mab〈ρia|ρkb〉G =
Tr[M ]

n
δik ,

which again holds for any i, k. Finally, we pick Mab = δajδbl for an arbitrary choice of j and l, so
that the left-hand side becomes 〈ρij |σkl〉G. The right-hand side is only nonzero when i = k and
j = l (the latter implies Tr[M ] = 1). This establishes the claim in the case ρ ∼= σ.
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1.2.3 Character theory

Working with representations directly is too cumbersome for simple tasks like computing decom-
positions and testing equivalence. Thankfully, there is an alternative: character theory. We begin
by defining characters, and stating a few basic properties.

Definition 1.2.1. Let (ρ, V ) be a representation of a finite group G. The character of ρ is the
map χρ : G→ C defined by χρ(g) = Tr[ρ(g)].

Proposition 1.2.2. Let ρ and σ be representations of a finite group G. Then χρ⊕σ(g) = χρ(g) +
χσ(g) and χρ⊗σ(g) = χρ(g)χσ(g) for all g ∈ G.

Proof. See exercises.

We established orthonormality for matrix entries of irreducible representations in the previ-
ous subsection. This may have seemed a bit dry, but now there’s a payoff: we can show that
characters admit similar orthonormality relations; this, in turn, dramatically simplifies the task of
characterizing representations.

Proposition 1.2.3. Let ρ and σ be irreducible representations of a finite group G. If ρ ∼= σ, then
〈χρ|χσ〉G = 1; otherwise 〈χρ|χσ〉G = 0.

Proof. See exercises.

Theorem 1.2.1. Let ρ be a representation of a finite group G, with irreducible direct sum decom-
position ρ ∼= ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk. Given an irreducible representation σ of G, the number of ρj
isomorphic to σ is equal to 〈χρ|χσ〉G.

Proof. By Proposition 1.2.2,

〈χρ|χσ〉G = 〈χρ1 |χσ〉G + 〈χρ2 |χσ〉G + · · ·+ 〈χρk |χσ〉G .

By Proposition 1.2.3, each term on the right-hand side above is either one or zero, depending on
whether ρj is isomorphic to σ or not. The claim follows.

Noting that rearrangement of direct summands is an isomorphism of representations yields the
following important corollary.

Corollary 1.2.1. Two representations are isomorphic if and only if they have the same character.

Recall that the set of group elements of a finite group can be partitioned into conjugacy classes;
each conjugacy class is a subset X ⊂ G such that x, y ∈ X implies y = gxg−1 for some g ∈ G.
A function f : G → C is called a class function if it is constant on conjugacy classes, i.e., if
f(yxy−1) = f(x) for all x, y ∈ G. We will denote the space of class functions on G by CclG; it is
clearly a subspace of the space CG of all functions on G. Moreover, its dimension is equal to the
number of conjugacy classes of G.

Theorem 1.2.2. Let G be a finite group. Then the set {χρ : ρ ∈ Ĝ} is an orthonormal basis for
the space CclG of class functions on G.
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Proof. That each χρ is actually a class function follows from the cyclic property of the trace:

χρ(yxy
−1) = Tr[ρ(yxy−1)] = Tr[ρ(y−1)ρ(y)ρ(x)] = χρ(x) .

By Proposition 1.2.3, the irreducible characters also form an orthonormal system inside CclG. It
remains to check that this system is complete; we will do this by showing that any class function
orthogonal to all of the irreducible characters is zero. Let f be such a function, and ρ an irreducible
representation. Consider the “inner product” of f with ρ:

ρf :=
∑
g

f(g)∗ρ(g) . (1.4)

Note that, since f is a class function, we have

ρ(x)ρfρ(x)−1 =
∑
g

f(g)∗ρ(xgx−1) =
∑
h

f(x−1hx)∗ρ(h) =
∑
h

f(h)∗ρ(h) = ρf .

By Schur’s Lemma, ρf is a scalar multiple of the identity. To find the scalar, we compute the trace.

Tr[ρf ] =
∑
g

f(g)∗Tr[ρ(g)] =
∑
g

f(g)∗χρ(g) = 〈f |χρ〉 = 0 .

By Proposition 1.2.2, ρf is actually zero even when ρ is not irreducible. In particular, if ρ is the
regular representation of G and eg denotes the basis vector corresponding to the group element g,
we have that

ρf · e1 =
∑
g

f(g)∗ρ(g) · e1 =
∑
g

f(g)∗eg

is zero. Since the eg are orthogonal, it follows that f∗ = f = 0.

The following important fact is an immediate consequence of the above and Proposition 1.2.3.

Corollary 1.2.2. For finite groups, the number of irreducible representations is equal to the number
of conjugacy classes.

We end this section with two standard applications of character theory to the problem of
computing irreducible decompositions. Given a group G, we denote the set of all irreducible
representations of G (modulo equivalence) by Ĝ. The following crucial fact tells us that the regular
representation RegG of G contains all the elements of Ĝ as subrepresentations. In a concrete sense,
this means that RegG encapsulates all of the representation-theoretic data about G.

Theorem 1.2.3. Let G be a finite group. Then every ρ ∈ Ĝ appears in the direct sum decomposition
of RegG with multiplicity equal to its dimension dρ. In particular, |G| =

∑
ρ∈Ĝ d

2
ρ.

Proof. See exercises.

Looking back at Theorem 1.1.1 (every representation is a direct sum of irreducibles), note that
we made no mention of uniqueness of decompositions. Indeed, the choice of projection operator
(or inner product) may affect the decomposition. Nonetheless, there is still a sense in which
decompositions are unique. Determining this unique form and explicitly computing the subspaces
is yet another place where characters are quite useful.
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Theorem 1.2.4. Let (ρ, Vρ) be a representation of a finite group G, and let σ1, σ2, . . . , σk be the
irreducible subrepresentations of ρ. For each j, let Wj denote the direct sum of all the irreducible
subrepresentations of ρ isomorphic to σj. Then the decomposition

Vρ = W1 ⊕W2 ⊕ · · ·Wk

is unique, i.e., it does not depend on the choice of full irreducible decomposition of ρ.
Moreover, the operator

Πσj :=
dσj
|G|

∑
x∈G

χσj (x)∗ρ(x)

is a projection operator on Vρ with image Wj.

Proof. We will prove the second claim, regarding the operators Πσj ; the first claim will then follow
by the uniqueness of the Πσj . First, consider the restriction Πσj |τ of Πj to some irreducible
subrepresentation τ of ρ. Since the character χσj is a class function, we already saw in the proof of
Theorem 1.2.2 that Πσj |τ is a scalar multiple of the identity. To compute the scalar, we take the
trace as usual.

Tr[Πσj |τ ] =
dσj
|G|

∑
x∈G

χσj (x)∗χτ (x) = dσj 〈χσj |χτ 〉 .

The scalar is thus 1 if σj is isomorphic to τ , and 0 otherwise. Note that Πσj |Wi is a direct sum of
some number of copies of Πσj |σi , and that

Πσj =

k⊕
i=1

Πσj |Wi .

Each of the above summands is either the identity operator (if σj ∼= σi) or the zero operator (if
σj 6∼= σi). The result follows.

We will sometimes refer to the above as the canonical decomposition theorem.

1.2.4 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. Check that the “ρ-averaged inner product” in (1.2) is truly an inner product, and that each
ρ(x) is a unitary operator with respect to this inner product.

2. Let ρ be a representation. What is M :=
∑

g∈G ρ(g)? What is the image of M?

3. Use Proposition 1.2.1 (orthogonality of matrix entries) and the definition of characters to
prove Proposition 1.2.2 (character of direct sum representations) and Proposition 1.2.3 (or-
thogonality of irreducible characters).

4. Use character theory to prove Theorem 1.2.3 (decomposition of the regular representation).

5. Let (ρ, Vρ) be a representation of G and let V ∗ρ be the dual space of Vρ, consisting of all linear
functionals ϕ : Vρ → C on Vρ. Show that there exists a representation (ρ∗, V ∗ρ ) which satisfies

(ρ∗(g)ϕ) : ρ(g)v 7→ ϕ(v)

for all g ∈ G, v ∈ Vρ and ϕ ∈ V ∗ρ . This representation is called the dual or contragredient
representation of ρ. What is the character of ρ∗, in terms of χρ?
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6. Prove that all irreducible representations of abelian groups are one-dimensional. Give three
different proofs: one by decomposing the regular representation, another using Corollary 1.2.2,
and another one using Schur’s Lemma directly.

7. Let G be a finite abelian group, and Ĝ its set of irreducible representations (i.e., characters).
Prove that Ĝ is itself a group (called the dual group of G), and that it is isomorphic to G.

8. Please list all of the typos and mistakes that you found in the lecture notes and exercises in
this Section. Thanks!

1.3 Constructions and Examples

1.3.1 Preliminaries

We now refresh two basic notions from group theory that we will need: product groups, and coset
decompositions. Let G1 and G2 be two finite groups. Then we can form their direct sum G1 ×G2

to be the set {(g1, g2) : g1 ∈ G, g2 ∈ G} of all pairs of group elements (one from G1 and one from
G2), together with coordinatewise composition:

(g1, g2)(h1, h2) = (g1h1, g2h2) .

Direct products are quite useful; for example, we need them to classify all abelian groups (they are
all direct products of cyclic groups).

Now let G be a finite group, and H be a subgroup (i.e., a subset of G which is closed under the
group operation.) We will frequently write H ≤ G for short. Given g ∈ G, the set gH := {gh :
h ∈ H} is called a left coset of H in G. If two elements x, y ∈ G belong to the same coset of H
(equivalently, if x−1y ∈ H), then we say that they are congruent modulo H, and write x ≡ y mod H.
It’s easy to check that the cosets of H form a partition G; there are thus |G|/|H| distinct cosets.
The number |G|/|H| is called the index of H in G. If we pick one element from each coset to form
a set R, then we say that R is a system of representatives for the cosets of H in G.

To check your understanding, try the following simple exercise. Let G1 and G2 be finite groups,
and let G := G1 × G2 be their direct product. Let H ≤ G be the subgroup defined by H :=
{(g1, 1) : g1 ∈ G1}. Compute a coset decomposition and a set of coset representatives for H in G.
What is the index?

In addition to the cyclic groups Z/nZ and the symmetric groups Sn we introduced before, in
this Section we will also talk about the dihedral groups Dn. We will define them below, in the
Examples section.

1.3.2 Products

We have previously seen how to take representations of a particular group G, and use them to build
other representations of G (e.g., via subrepresentations, direct sums, and tensor products.) Now
we will consider how to start from representations of G and build representations of other groups
related to G. A straightforward example is for product groups.

Proposition 1.3.1. Let G1 and G2 be finite groups, and G1 ×G2 their product. Given irreducible
representations (ρ1, Vρ1) of G1 and (ρ2, Vρ2) of G2, the map

ρ1 ⊗ ρ2 : G1 ×G2 −→ GL(Vρ1 ⊗ Vρ2)

(g1, g2) 7−→ ρ1(g1)⊗ ρ2(g2)
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defines an irreducible representation of G1×G2. Moreover, all irreducible representations of G1×G2

arise in this way.

Proof. The fact that ρ1 ⊗ ρ2 is a representation follows directly from the rule for composition of
tensor products of operators:

[ρ1 ⊗ ρ2](a, b) · [ρ1 ⊗ ρ2](c, d) = (ρ1(a)⊗ ρ2(b)) · (ρ1(c)⊗ ρ2(d))

= ρ1(ac)⊗ ρ2(bd) = [ρ1 ⊗ ρ2](ac, bd) .

Irreducibility follows from character theory. First, note that the character of ρ1 ⊗ ρ2 is

χρ1⊗ρ2(x, y) = Tr[[ρ1 ⊗ ρ2](x, y)] = Tr[ρ1(x)⊗ ρ2(y)] = Tr[ρ1(x)] Tr[ρ2(y)] = χρ1(x)χρ2(y) .

Now one should exercise care in keeping track of which inner product we are using. In the following,
I have distinguished them by subscripts. We have

〈χρ1⊗ρ2 |χρ1⊗ρ2〉G1×G2 = 〈χρ1 |χρ1〉G1〈χρ2 |χρ2〉G2 = 1 ,

where the last step follows from the irreducibility of ρ1 and ρ2. We conclude that ρ1 ⊗ ρ2 is
irreducible.

To see that all of the irreducible representations of G1 × G2 are of this type, we just apply
Theorem 1.2.3 and do some simple dimension counting.∑

ρ1∈Ĝ1

∑
ρ2∈Ĝ2

d2ρ1⊗ρ2 =
∑
ρ1∈Ĝ1

∑
ρ2∈Ĝ2

d2ρ1d
2
ρ2 =

∑
ρ1∈Ĝ1

d2ρ1

∑
ρ2∈Ĝ2

d2ρ2 = |G1||G2| = |G1 ×G2| .

The extreme left-hand side is the total squared dimension of all representations constructed as
above. The extreme right-hand side is (by Theorem 1.2.3) the total squared dimension of all
representations of G1 ×G2. So, by the above equality, we have them all.

It is important to note the difference between the above tensor product, and the tensor product
of representations defined in the previous section. The crucial difference is that, in this case, we
start with representations of G1 and G2 and end up with a representation of G1×G2. In the tensor
product from Definition 1.1.6, we start with two representations of G, and end up again with a
representation of G. This can become even more confusing when considering the representations
of G×G; then we can take the tensor product of an irreducible representation ρ with itself in two
different ways:

[ρ⊗ ρ](g) = ρ(g)⊗ ρ(g) vs. [ρ⊗ ρ](x, y) = ρ(x)⊗ ρ(y) .

The former is a representation of G, while the latter is a representation of G×G. When thinking
about tensor products, you should always be clear about which tensor product you mean!

1.3.3 Restriction and Induction

We already saw that restricting a representation to a proper invariant subspace yields another
representation (of the same group.) We can also restrict representations to subgroups, as follows.
Let (ρ, Vρ) be a representation of a finite group G and H a subgroup of G. Define

ResGH [ρ] : H −→ GL(Vρ)

h 7−→ ρ(h) .
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It’s straightforward to check that the (ResGH [ρ], Vρ) is a representation of H.
It turns out that we can also “lift” representations of subgroups to representations of a larger

group. This is called induction, and is a bit more complicated than restriction. We start with two
examples. For both examples, we let H ≤ G and R a set of representatives for the cosets of H in
G.

First, take χH to be the trivial representation of H. Let V be the vector space spanned by
{er : r ∈ R}. Then G acts on the basis of V by g · er 7→ eg·r. This is the same as the action of G
on the cosets of H in G. In particular, notice the slight trick in notation: g · r is not a product of
group elements g and r; instead, it is the image of the representative r under the action of g. This,
in turn, is again an element of R. To compute it explicitly, take the group product gr, figure out
which coset it belongs to, and take its representative. In any case, as we saw earlier, this action of
G yields a permutation representation (ρ, V ) of G. We say that this representation is induced by
χH , and write

ρ = IndGH [χH ] .

For the second example, take the regular representation (RegH , VH) of H. Define a vector space
W consisting of |R| = |G|/|H| copies of VH , i.e.,

W =
⊕
r∈R

V(r,H)

where each V(r,H) is isomorphic to VH . We will define a representation of G on W . This repre-
sentation will permute around the spaces V(r,H) in some way, as well as acting inside each V(r,H).
Concretely, the coset decomposition

G =
⋃
r∈R
{rh : h ∈ H}

allows us to identify the elements G with the basis elements vr,h of W . Here, {vr,h : h ∈ H} spans
V(r,H). It’s then straightforward to check that the action of any particular g ∈ G on vr,h is given by
left multiplication: g sends rh to grh, which can then be decomposed again as grh = r′h′ for some
r′ ∈ R and h′ ∈ H. We then define g ·vr,h = vr′,h′ . If you’re not there yet, you should now convince
yourself that the representation on W thus defined is isomorphic to the regular representation RegG
of G.

We now define the notion of induced representation, generalizing both examples above.

Definition 1.3.1. Let H ≤ G with a set R of coset representatives, and let (σ, V ) be a representa-
tion of H. Then the induced representation IndGH [ρ] is defined on

⊕
r∈R Vr (i.e., |R| copies of V )

by setting

IndGH [ρ](g) ·
∑
r

vr = ρ(h)vg·r ,

where h is the unique element of H defined by gr = (g · r)h.

The last statement may require some clarification: it says that the product of the group elements
gr is an element of some left coset of H; the representative of that coset is g · r (here · is the action
of G on the set of left cosets), which precisely means that we can write gr = (g ·r)h for some h ∈ H.

1.3.4 Examples : cyclic and dihedral groups

In this section, we will construct all the irreducible representations of some common families of
groups.
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Cyclic groups. Recall that the cyclic groups are defined by Z/nZ = 〈x|xn = 1〉. Explicitly, we
can think of this as the set {0, 1, . . . , n − 1} of integers with addition modulo n. Since it is an
abelian group, all of the representations will be one-dimensional; we may as well consider only the
unitary ones. So we are looking for homomorphisms

χ : Z/nZ −→
{
eiθ : θ ∈ [0, 2π)

}
to the group of invertible complex numbers of modulus 1. From the presentation of Z/nZ it is clear
that we need only decide where to map x; to preserve homomorphism, the image should have order
n. There are n choices of how to do this:

χk : x 7→ e2πixk/n ,

one for each k ∈ {0, 1, . . . , n− 1}. To show that these are non-isomorphic, we verify that the inner
products satisfy

〈χj |χk〉 = δjk .

By the decomposition of the regular representation, we know that this is all of them.

Dihedral groups. The dihedral group Dn is the set of all reflections and rotations of a regular
n-gon. For concreteness, we can imagine the n-gon centered at the origin in the plane, and rotated
and rescaled so that one of the vertices is placed at (1, 0). If r is the counterclockwise rotation by
2π/n, then r has order n, and hence 〈r〉 is a cyclic subgroup of Dn isomorphic to Z/nZ. Let s be
any reflection, and check that s2 = 1 and srs−1 = r−1. This is a complete set of relations, so we
can write

Dn =
〈
r, s | rn = 1, s2 = 1, srs−1 = r−1

〉
.

Let’s find the irreducible representations of Dn. We consider two separate cases: n even, and
n odd. First, for n even, both r and s have even order. We can thus assign each of them to 1 or
−1 to get a homomorphism into the unit circle. There are four choices for how to do this, which
yields four nonisomorphic irreducible representations. To compute the remaining representations,
we induce up from the characters of the subgroup H ∼= Z/nZ of pure rotations. Let ρk = IndDnH [χk].
There are two cosets: H and sH. It follows that ρk will be two-dimensional; the action on the
cosets is trivial for the identity, and a swap for s. The action on the non-identity coset is also
“twisted” (by a minus sign in the exponent.) We thus have

ρk(r
j) =

(
ωjk 0

0 ω−jk

)
ρk(sr

j) =

(
0 ω−jk

ωjk 0

)

where ωn = e2πi/n. It’s straightforward to check that ρ0 ∼= χ1 ⊕ χ2 where χ1 is the trivial repre-
sentation and χ2 is the character defined by r 7→ 1 and s 7→ −1. One also sees that ρk ∼= ρn−k (via
the isomorphism that swaps the two standard basis elements.) For the remaining irreps, a direct
calculation confirms that

ρk(r) · v = αv

only if v spans one of the two coordinate axes; these axes, in turn, are swapped by ρk(s). We
thus have that the {ρk : 0 < k < n/2} are irreducible. Summing the squared dimensions of the
irreducible representations identified so far, we get

1 · 4 + 22 · (n/2− 1) = 2n = |Dn| ,
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so we have all of them.
For odd n, the order of r is no longer even, so we only get two one-dimensional representations

by setting s 7→ 1 or s 7→ −1. We can construct two-dimensional representations ρk exactly as above,
and the same arguments still hold. Since n is odd, the number of pairwise non-isomorphic ρk is
now (n−1)/2. Counting dimensions, we see again that this is all there is: 1 ·2+22 · (n−1)/2 = 2n.

1.3.5 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. Suppose ρ is an irreducible representation of a finite group G, and H a subgroup of G. Is
ResGH [ρ] irreducible?

2. Suppose ρ is an irreducible representation of a group H, which is a subgroup of another group
G. Is IndGH [ρ] irreducible?

3. Compute the character table of Z/4Z. Be sure to include a proof that it is correct and
complete.

4. Compute the character table of D4. Be sure to include a proof that it is correct and complete.

5. Let G = H ×K, and σ an irreducible representation of K. Show that IndGK [σ] is isomorphic
to RegH ⊗ σ.

6. Let G = (Dk)
n be the product Dk × · · · ×Dk of n copies of the dihedral group Dk, for some

n, k > 1. Completely characterize all of the irreducible representations of G.

7. Please list all of the typos and mistakes that you found in the lecture notes and exercises in
this Section. Thanks!

1.4 The group algebra and the Fourier transform

1.4.1 The group algebra

Recall that an associative algebra is a vector space V equipped with an associative bilinear product
V × V → V . The product of two vectors v, w ∈ V will be denoted by v ∗ w, and must satisfy
associativity, distributivity and bilinearity conditions:

• (u ∗ v) ∗ w = u ∗ (v ∗ w);

• (v + w) ∗ u = v ∗ u+ w ∗ u;

• u ∗ (v + w) = u ∗ v + u ∗ w;

• (av) ∗ (bw) = ab(v ∗ w).

We will only deal with unital algebras, i.e. those that possess an identity element 1 satisfying
1 ∗ v = v for all v ∈ V . A typical example is the set End(W ) of linear operators on a finite
dimensional complex vector space W . More concretely, the space Mn(C) of all n × n complex
matrices is an algebra, where ∗ is the matrix product. This is sometimes called the full matrix
algebra over Cn. If you have not encountered algebras (or matrix algebras) before, you should
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verify explicitly that this is indeed an algebra. In particular, you should understand the structure
of the underlying vector space, as well as why the ∗ product satisfies all of the conditions above.

For us, the most important algebra (besides the full matrix algebras) is the group algebra of a
finite group G. We defined this before, but now we will take it apart and study it very carefully.
Recall that it is defined as the space of functions from G to the complex numbers, i.e.,

CG = {f : G→ C} .

The vector space structure is given by addition and scaling of functions in the expected way: for
f, g ∈ CG and a ∈ C, it’s immediate that f + g and af are also elements of CG, and that this
operation makes CG into a vector space. To make CG into an algebra, we need to specify a product.
This is the so-called convolution product, and is defined as follows.

[f ∗ g](x) =
1

|G|
∑
y∈G

f(y)g(y−1x) .

It’s straightforward to check that this is associative, distributive, and bilinear, and thus indeed
an algebra product. The identity element is δe, i.e., the function which takes the value 1 on the
identity element e ∈ G, and 0 elsewhere.

As we discussed before, CG also comes equipped with a natural inner product

〈f |g〉G =
1

|G|
∑
x∈G

f(x)g(x)∗ .

This inner product also gives us a notion of length (or norm) for functions in CG, by setting

‖f‖22 = |〈f |f〉| = 1

|G|
∑
x∈G
|f(x)|2 .

We have already seen two bases of CG which are orthonormal with respect to the above inner
product. The first is the group basis {δg : g ∈ G} where δg(h) = δgh. You can also think about
this as the basis of “point functions.” The other basis consists of the matrix entries of irreducible
representations of G. To be more precise, this “other” basis is in fact a family of bases; fixing
one element of this family requires choosing a basis for each ρ ∈ Ĝ. Once this is done, then
Proposition 1.2.1 says that the functions ρ′ij :=

√
dρρij are orthonormal, i.e.

〈ρ′ij |σ′kl〉 =

1 if ρ ∼= σ and i = k, j = l ,

0 otherwise.

This basis has some interesting properties related to the convolution product. To see this, let’s
compute the convolution of two matrix entries.

[ρij ∗ σkl](x) =
1

|G|
∑
y∈G

ρij(y)σkl(y
−1x)

=
1

|G|
∑
y∈G

ρij(y)

dσ∑
t=1

σkt(y
−1)σtl(x)

=
∑
t

σtl(x)
1

|G|
∑
y∈G

ρij(y)σtk(y)∗

=
∑
t

σtl(x)〈ρij |σtk〉 .
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This is zero unless ρ ∼= σ and i = t and j = k; in that case it equals ρil(x). Summarizing, we have

ρij ∗ σkl =

ρil if ρ ∼= σ and i = k ,

0 otherwise.

This looks interesting. What does it remind you of?
Let’s look at this from another point of view. Let Lx be the “left multiplication by x” operator

on CG. We previously wrote this as RegG(x). Note that [Lxf ](y) = f(x−1y) for any f ∈ CG. Let’s
see how this operator interacts with convolution.

[Lx[f ∗ g]](y) = [f ∗ g](x−1y) =
∑
z

f(z)g(z−1x−1y)

=
∑
t

f(x−1t)g(t−1y) = [[Lxf ] ∗ g](y) ,

where we applied the substitution t = xz in the third step. The above means that the operator
“convolve with g” (let’s call it Cg) commutes with Lx for every x ∈ G. Recalling the decomposition

RegG
∼=
⊕
ρ∈Ĝ

ρ⊕dρ

of the regular representation of G and applying Schur’s Lemma to Cg, we see that Cg is block
diagonal (in the first direct sum above), and is described by a dρ × dρ complex matrix inside each
space ρ⊕dρ . To see this, it is instructive to draw the d|G| × d|G| matrix for Cg, separate it into

|Ĝ| × |Ĝ| blocks, and fill in each block according to Schur’s Lemma. But what are these dρ × dρ
matrices? As it turns out, understanding this question (as we will do in the next subsection) sheds
significant light on the structure of CG.

Before we go on, let’s compute one more thing about CG: it’s center. Letting δx be the point
function at x ∈ G, we check that

[f ∗ δx](y) =
∑
z

f(z)δx(z−1y) = f(yx−1)

[δx ∗ f ](y) =
∑
z

δx(z)f(z−1y) = f(x−1y)

Note that f is in the center of CG if and only if f ∗ δx = δx ∗ f for all x ∈ G. The above tells us
that this is true if and only if f(xy) = f(yx) for all x, y ∈ G, i.e., f is a class function.

1.4.2 The Fourier transform on finite groups

The perhaps somewhat mysterious results of the previous section can be understood more clearly
via the Fourier transform on G. Simply put, the Fourier transform is a change of basis from the
group basis to the orthonormal basis of matrix entries ρ′ij of irreducible representations. For this
reason, the latter is sometimes called “the Fourier basis” (although by now you know that this is
not unique.) Recall that expanding a vector v in an orthonormal basis B is written

v =
∑
b∈B
〈v|b〉b .
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In our case, expanding functions f ∈ CG in terms of the Fourier basis functions is as follows.

f =
∑
ρ∈Ĝ

dρ∑
i,j=1

〈f |ρ′ij〉ρ′ij . (1.5)

The terms 〈f |ρ′ij〉 are called the Fourier coefficients of f , and are defined by

f̂(ρij) = 〈f |ρ′ij〉 =

√
dρ

|G|
∑
x∈G

f(x)ρij(x)∗ .

It is convenient to gather up all of the coefficients involving ρ into a matrix, which then allows us
to forget the choice of basis for ρ. We thus define

f̂(ρ) =

√
dρ

|G|
∑
x∈G

f(x)ρ(x)† .

The Fourier transform is defined to be the map

F : CG −→
⊕
ρ∈Ĝ

Mdρ(C)

f 7−→
⊕
ρ∈Ĝ

f̂(ρ) . (1.6)

We will shortly see that it is in fact an algebra isomorphism. First, we can rewrite Equation 1.5 to
get the Fourier inversion formula:

f(g) =
∑
ρ∈Ĝ

dρ∑
i,j=1

〈f |ρ′ij〉ρ′ij(g)

=
∑
ρ∈Ĝ

√
dρ

dρ∑
i,j=1

f̂(ρ)jiρij(g)

=
∑
ρ∈Ĝ

√
dρ Tr

[
f̂(ρ)ρ(g)

]
. (1.7)

Now we check that the algebra product on CG (i.e., convolution) is mapped to the algebra product
on
⊕

ρ∈ĜMdρ(C) (i.e., matrix product).

f̂ ∗ g(ρ) =

√
dρ

|G|
∑
x∈G

[f ∗ g](x)ρ(x)†

=

√
dρ

|G|2
∑
x∈G

∑
y∈G

f(y)g(y−1x)ρ(x−1)

=

√
dρ

|G|2
∑
x∈G

∑
y∈G

f(y)g(y−1x)ρ(x−1yy−1)

=

√
dρ

|G|2
∑
z∈G

g(z)ρ(z−1)
∑
y∈G

f(y)ρ(y−1)

=
1√
dρ
ĝ(ρ) · f̂(ρ) , (1.8)
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where we used the substitution y−1x 7→ z in the second-to-last step. The issue of the constant d
−1/2
ρ

is a minor one: we could have easily made the constant 1 by rescaling the definition of the Fourier
transform; the advantage of the present scaling is that it makes the Fourier transform unitary—as
you will verify in the homework.

We finish with an important example: the discrete Fourier transform, or DFT. This transform
is just a special case of F , for the cyclic group Z/nZ. Its applications are legion. We start with a
function

f : Z/nZ→ C;

we can imagine that the function values represent n equispaced samples from some periodic signal.
The standard approach in signal analysis (or any of the other untold applications of the DFT) is
to decompose our signal into distinct frequencies. These frequencies are precisely the characters of
Z/nZ. The frequency components of f are

f̂(k) =

n−1∑
j=0

f(j)χk(j)
∗ =

n−1∑
j=0

f(j)e−2πijk/n .

and the decomposition of the function into these components is

f(x) =

n−1∑
k=0

f̂(x)χk(x)∗ =

n−1∑
k=0

n−1∑
j=0

f(j)χk(jx
−1) =

n−1∑
k=0

n−1∑
j=0

f(j)e2πik(j−x)/n .

One of the many advantages of this decomposition is that convolution (which is useful in signal
analysis, but costly to compute directly) can be computed just by multiplying together n complex
numbers.

1.4.3 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. Let G be a finite group. Compute the following Fourier transforms:

• δ̂e, where δe is the function that takes the value 1 on the identity and 0 elsewhere.

• χ̂1, where χ1 is the trivial representation.

2. Let G be a finite group, and ρ an irreducible representation of G. Compute the following
Fourier transforms:

• ρ̂ij for any 1 ≤ i, j ≤ dρ;
• χ̂ρ.

3. Let G be a finite group, and ρ, σ two (possibly inequivalent) irreducible representations of G.
Compute χρ ∗ χσ.

4. Let G be a finite abelian group. Define an inner product on CĜ such that the Fourier
transform is unitary, i.e., ‖f‖2 = ‖f̂‖2 for every f ∈ CG.

5. Recall that the space Mn(C) of n× n matrices is an inner product space, with inner product

〈A,B〉 = Tr[A†B] .

Now extend your solution in Problem 4 to cover non-abelian groups.
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6. Let G be a finite abelian group, and f ∈ CG. Define

supp f = {x ∈ G : f(x) 6= 0} and supp f̂ = {χ ∈ Ĝ : f̂(χ) 6= 0} .

Recall that ‖f‖2∞ = max{|f(x)| : x ∈ G}. Prove that

‖f‖2∞ ≤
∑
χ∈Ĝ

|f̂(χ)|2
∑

χ∈supp f̂

1 .

7. Continuing from Problem 5, use your solution to Problem 4 to prove the following uncertainty
principle for finite abelian groups:

|supp f ||supp f̂ | ≥ |G| for all f ∈ CG .

Give an example (of a particular f , for any G) where you get equality above.

8. Please list all of the typos and mistakes that you found in the lecture notes and exercises in
this Section. Thanks!



Chapter 2

Compact groups

2.1 Basic facts: passing from finite to compact

2.1.1 Topology, measure, and integration

We begin with a quick refresh of basic ideas from point-set topology. If you have not seen formal
topology before, it may seem dry at first. Just keep in mind that virtually everything you want
to do with infinite sets (take limits, discuss continuity, integrate functions, etc.) requires topology.
Even if you have not seen the formal definitions before, you have certainly been implicitly using
them! As you read the next few paragraphs, it might be useful to occasionally flip down and look
at some of the examples before continuing.

Topological spaces, connectedness and compactness. Recall that a topology on a set X
is a family T of subsets such that (i.) the empty set and X are in T , (ii.) any union of elements of
T is also an element of T , and (iii.) any finite intersection of elements of T is also an element of T .
A set X equipped with a topology is called a topological space, or simply space. The elements
of T are called open sets, and their complements are closed sets. An arbitrary subset of X can be
closed, open, both, or neither. A basis for a topology is a family of sets which generate T under
the operation of arbitrary unions; in other words, any open set can be written as a union of basis
sets. Starting from a topological space X, any subset Y ⊆ X can also be given the structure of a
topological space, by setting the open sets of Y to be the intersections of Y with the open sets of X,
i.e. TY := {Y ∩O : O ∈ T }. The set Y equipped with the topology TY is then called a subspace
of X. The product X × Y of two topological spaces X and Y is again a topological space, with
open sets the arbitrary unions of products U × V where U is open in X and V is open in Y . This
extends in the obvious way to any finite number of products.

A topological space which is equal to a disjoint union of two nonempty open sets is said to be
disconnected. If a topological space cannot be written as a disjoint union of nonempty open sets,
then it is said to be connected. Any space X can be partitioned into a collection of connected
subspaces; the elements of the finest such partition are called the connected components of that
space.

Unlike that of connectedness, the formal definition of compactness is slightly unwieldy; thinking
about examples will help clarify what it means. Formally, a topological space X is compact if
any open cover contains a finite subcover. This means that for every (possibly infinite) collection
{Uj} of open sets such that X ⊆ ∪jUj , there is a finite set J such that X ⊆ ∪j∈JUj . An equivalent

28
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definition1 is in terms of limit points. A limit point of an infinite set S is a point x such that
every open set containing x also contains some point s ∈ S not equal to x. A space X is then
compact if every infinite subset S of X has a limit point in X.

Continuity, measure and integration. A topology allows us to define a notion of continuous
function. Roughly speaking, these are functions from one topological space to another, which map
nearby points to nearby points. This is defined in terms of neighborhoods; a neighborhood of a
point x is simply an open set containing x. Formally, a function f : X → Y is continuous at a
point x if for every neighborhood V of f(x), there exists a neighborhood U of x such that f(U) ⊆ V .
If f is continuous at every point of X, then we simply say that f is continuous.

We will require the notion of measure. A measure assigns a notion of “mass” to the subsets of
a topological space, and is a crucial step towards integration. Measure theory can be a somewhat
complicated subject to treat in complete rigor, so we will settle for a semi-formal treatment. For
us, a measure µ on a compact set X will be a map which assigns to each subset2 M ⊆ X a real
number µ(M), such that (i.) µ(∅) = 0 and µ(X) = 1, (ii.) µ(M) ≥ 0 for all M ⊆ X, and (iii.)
µ(∪jEj) =

∑
j µ(Ej).

Once we have fixed a measure for our space X, then (up to a lot of details we will not discuss)
we also get integrals. This means that, for any3 function f : X → C on a compact space X with
measure µ, we can define its integral ∫

X
f(x) dµ .

The integral captures the familiar notion of “area under the curve.” It can be defined completely
by first setting its value on characteristic functions of subsets of X, as follows.

∫
X
χM (x) dµ = µ(M) where χM (x) =

1 if x ∈M

0 if x 6∈M .

We then extend the integral to functions which are linear combinations of such characteristic
functions (on disjoint subset) by requiring that the integral should be linear, i.e.∫

X
[αf + g](x) dµ = α

∫
X
f(x) dµ+

∫
X
g(x) dµ for all f, g : X → C and α ∈ C .

The remaining step is to incorporate limits. Roughly speaking, we require that the integral of a
limit of functions should be equal to the limit of the integrals.

Examples. A finite set X is typically given the so-called discrete topology, where the basis
consists of singleton sets {{x} : x ∈ X}. The topology then consists of all subsets of X. Every
set of X is both open and closed. It is a disconnected space, with connected components being
the singleton sets. It is compact, since any cover of X by open sets will necessarily contain the
finite subcover {{x}x ∈ X}. By following the definition, it’s easy to see that any function from a
finite set to another set is continuous (basically this is because {x} is a neighborhood of x.) We

1Actually, these definitions are not equivalent in general. However, they are equivalent on metric spaces, and this
will be enough for us.

2Technically, this will not hold for all subsets; we will not be concerned with this, as all the sets we will encounter
will be “measurable.”

3Here again, this will hold for all functions we will encounter, but is not true in general.
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can define a measure on X by setting µ({x}) = 1/|X| for each x ∈ X. The integral on X is then
defined by ∫

X
f(x) dµ :=

1

|X|
∑
x∈X

f(x) .

The real line R is a topological space with basis consisting of all the open intervals (a, b) = {x :
a < x < b}, for all a < b. The notion of limit points, openness, and closedness is the natural one
you already know. For example, the limit points of the set (a, b) are a and b, and the closure of
(a, b) is the set [a, b] = {x : a ≤ x ≤ b}, which is a closed set and contains all of its limit points. The
space R is connected: if R is a disjoint union of X and Y , then we can pick an interval [a, b] with
one endpoint in X, the other endpoint in Y , and show that [a, b] contains some points neither in X
nor in Y , a contradiction. On the other hand, R is not compact: the open cover {(x, x+2) : x ∈ Z}
contains no finite subcover; alternatively, the infinite subset {x : x ∈ Z} ⊂ R has no limit point in
R. Since we did not worry about measure and integration for non-compact sets, we will not discuss
it for R. However, the closed interval [0, 1] is compact, and admits the usual notion of measure and
integration. This is defined by assigning measure to intervals in the obvious way: µ((a, b)) = b− a.
The resulting integral is the familiar Riemann (or Lebesgue) integral, and allows us to write things
like ∫ 1

x=0
2x+ ix dµ = 2

∫ 1

x=0
x dµ+ i

∫ 1

x=0
x dµ = 1 + i/2 .

One similarly defines a topology on Rn. In all of these spaces, one can show that compactness
is equivalent to being closed and bounded (bounded here means that it lies inside a ball of some
finite radius). Measure and integration can be defined appropriately for compact subsets of Rn. By
viewing C as R2, all of this extends to finite-dimensional complex vector spaces as well. In all of
these spaces, continuity of functions is precisely the notion of continuity you are familiar with from
calculus.

The circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} ∼= {eiθ : 0 ≤ θ < 2π} is also a topological space,
with basis the open intervals (eiθ1 , eiθ2) for θ2 > θ1. Each such interval is assigned measure equal
to the (normalized) difference between the initial and the final angle. So, for 0 < θ1 < θ2 < 2π, we
have µ((eiθ1 , eiθ2)) = (θ2 − θ1)/2π. In other words, we are viewing S1 as the interval [0, 2π] of the
real line, with the two endpoints identified, and the measure rescaled by 1/2π. So, for instance,∫ π/4

θ=−π/4
1 dµ = µ((e−iπ/4, eiπ/4) =

1

2
.

The sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} is also a compact, connected topo-
logical space. We can re-parametrize the sphere in terms of spherical polar coordinates (θ, φ)
with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. This means that any ~x ∈ S2 ⊂ R3 can be written as
~x(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) for some (θ, φ) in the allowed range. The integral of a function
f : S2 → C (expressed in polar coordinates) is given by∫

S2

f(~x) dµ :=
1

4π

∫ 2π

0

∫ π

0
f(~x(θ, φ)) sin θ dθ dφ .

The 1/4π term ensures that the integral over the entire sphere is 1; the sin θ term comes from
changing the variables of integration; roughly speaking, it is the “distortion term” we must introduce
to fit the integral over the rectangle [0, 2π]× [0, π] onto the sphere.
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2.1.2 Topological groups and the Haar integral

A topological group is a group G equipped with a topology such that both the group product
(viewed as a map from G × G to G) and group inversion (viewed as a map from G to G) are
continuous functions. The real line R with addition, the unit circle S1 under complex multiplication,
and all finite groups (with the discrete topology) are all topological groups. While the first is not
compact, the latter two are; we call such groups compact groups. It is a theorem that compact
groups admit a special kind of measure, called Haar measure. Haar measure is a measure µ (as
defined above) with an additional properties: bi-invariance under the group product. This means
that for any X ⊂ G and any y ∈ G, the left translation y · X = {yx : x ∈ X} and the right
translation X · y = {xy : x ∈ X} have the same measure as X. In other words,

µ(X) = µ(y ·X) = µ(X · y) .

In fact, one can show that Haar measure is the unique bi-invariant measure.
With Haar measure established, we can now follow the above prescription for constructing an

integral. The result is the so-called Haar integral. It inherits the bi-invariance property from Haar
measure. In other words, we have∫

x∈G
f(yx) dµ =

∫
x∈G

f(xy) dµ =

∫
x∈G

f(x) dµ

for all y ∈ Y and all complex-valued functions f on G. The Haar integral will be crucial in
understanding the representation theory of compact groups, since it provides a generalized notion
of “averaging” over the group.

Examples. Recall that finite sets (with the discrete topology) are compact, and that all functions
on finite sets are continuous. It follows that any finite group G is a compact topological group,
with Haar measure defined by

µ(X) =
|X|
|G|

for any X ⊆ G ,

and Haar integral defined by ∫
G
f(x) dµ =

1

|G|
∑
x∈G

f(x) .

It’s straightforward to check that both are invariant under left-multiplication and right-multiplication
by elements of G.

The set S1 = {eiθ : 0 ≤ θ < 2π} with product eiφeiθ = ei(φ+θ) is also a compact topological
group. Again, the Haar measure and Haar integral are precisely equal to the “standard” measure
and integral for the space S1, as discussed above. Bi-invariance is straightforward to check. It
should be noted that S1 is isomorphic to SO(2), the group of rotations of the plane. Elements of
this group are 2× 2 orthogonal matrices with determinant one. In other words,

SO(2) = {M ∈M2(R) : M trM = 12 and det(M) = 1} .

Recall that a general matrix of this form can be written as

M =

(
cosϕ − sinϕ

sinϕ cosϕ

)
.
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Note that, from this point of view, functions f : SO(2) → C map matrices to complex numbers,
and we now know how to integrate such functions.

The set of origin-preserving rotations of three-dimensional Euclidean space is also a compact
group. This is the group

SO(3) = {M ∈M3(R) : M trM = 12 and det(M) = 1} .

Defining the Haar integral on SO(3) is slightly complicated, and proceeds roughly as follows:

1. Prove that the set H of z-axis preserving rotations is a subgroup isomorphic to SO(2); this
enables us to integrate any function supported only on H by using the integral on SO(2).
Moreover, we can use the invariance property (under multiplication by x) of the integral to
integrate any function supported on an arbitrary coset xH.

2. Prove that the coset space SO(3)/H is in bijective correspondence with the sphere S2. Hence
any function can be written as a sum of functions, each one defined only on one coset.

3. Now write the integral on SO(3) as an integral over H, followed by an integral over the coset
space: ∫

SO(3)
f(x) dx =

∫
y∈S2

∫
h∈SO(2)

f(yh) dy dh ,

where the two integrals are defined as above.

2.1.3 Representation theory of compact groups: general facts

We now essentially review most of the central results of Chapter I, but in the setting of compact
groups. In many cases, the definitions, theorems, and proofs are identical (or almost identical.)
When there are significant differences, we will sketch them out.

We begin by defining representations, which are now required to be continuous.

Definition 2.1.1. A representation of a compact group G is a continuous homomorphism ρ :
G→ GL(V ) for some finite-dimensional complex vector space V .

Just as before, if we fix a basis for V , then ρ becomes a matrix representation, and we can
talk about its matrix entries. The notion of isomorphism is also the same, and still amounts to
a simultaneous basis change. The notions of subrepresentation, direct sum, tensor product, and
irreducible representation are identical to the case of finite groups.

The first difference arises in trying to prove Maschke’s theorem; recall that this was a step
in the proof that every representation is a direct sum of irreducible representations. The proof
for compact groups is different in only one step: the construction of the symmetrized projection
operator. Before this was done by averaging over the finite group; we can now replace this with a
Haar integral. Letting (ρ, Vρ) be a representation, W an invariant subspace, and ΠW a projection
operator onto W , we set

Πρ
W :=

∫
G
ρ(x)ΠWρ(x)−1 dµ(x) , (2.1)

where the integral is the Haar integral. Note that the above is in fact an integral of an operator-
valued function. One way to define this is via a basis, and then to show basis independence by
using the linearity of the integral. The integral of a matrix-valued function F : G→Mn(C) is then
defined to be the unique operator

M =

∫
G
F (x) dµ(x) ∈Mn(C) satisfying Mij =

∫
G
F (x)ij dµ(x) for all 1 ≤ i, j ≤ n .
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With this definition, we can now return to (2.1), and prove that it is a projection operator which
commutes with ρ(x) for all x ∈ G. The remainder of the proof is as before.

Schur’s Lemma is stated and proved precisely as in the finite group case. The next step is to
show orthogonality of matrix entries of representations. In order for this to make sense, we need
an inner product for functions on G. This is defined as follows.

〈f |g〉G =

∫
G
f(x)g(x)∗ dµ(x) .

This also yields a notion of norm for such functions, by setting

‖f‖2 =
√
|〈f |f〉| .

Since these norms may not always be finite, we will henceforth restrict ourselves to working only
with functions of finite norm. We thus define, for any compact group G, the space

L2(G) = {f : G→ C : ‖f‖2 <∞} .

In words, this is the space of square-integrable complex-valued functions on the group. We can
now state the orthogonality condition for matrix entries of representations. It states that

〈ρij |σkl〉 =

1/dρ if ρ ∼= σ and i = k, j = l ;

0 otherwise.
(2.2)

Recall that the proof involved choosing a matrix Mab : Vσ → Vρ with a 1 in the a, b position and
zeroes elsewhere, and then showing that a certain averaged version of Mab is an intertwiner. We
do this again, now setting

M ′ab =

∫
G
ρ(x)Mabσ(x−1) dµ(x) .

We then check that this is an intertwiner and apply Schur’s Lemma to conclude M ′ab = λab1, with
λab = 0 when ρ 6∼= σ. The precise orthogonality condition now follows by computing traces.

Now that we have the orthogonality of matrix entries, we immediately also get orthogonality
for irreducible characters. We thus have

〈χρ|χσ〉 =

1 if ρ ∼= σ

0 otherwise.

One topic that we have not addressed so far is what happens to the regular representation.
Recall that the regular representation of G had a basis identified with the group elements of G.
This makes sense when G is finite, but in general it would give a vector space of uncountable
dimension when G is compact. Instead, let’s develop the analogy from a different point of view.
We can view the regular representation of the finite group as the space CG = {f : G → C}
with the group action y · f(x) = f(y−1x). This definition translates more easily to the compact
setting, except the space CG for compact G is again too big. Instead, we choose the space L2(G),
which is also a representation of G (with, in general, countably infinite dimension) under the action
y ·f(x) = f(y−1x). You might wonder if we discarded too much by passing from arbitrary functions
on G to square-integrable functions on G. The following theorem says that this is not the case.
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Theorem 2.1.1. Peter-Weyl. Let G be a compact topological group. The set of matrix entries
of irreducible representations of G are dense in the space L2(G). Moreover, we have the following
decomposition of representations:

L2(G) ∼=
⊕
ρ∈Ĝ

ρ⊕dρ .

We emphasize that Ĝ may now be countably infinite, unlike in the case of finite groups. Notice
that we have already shown one direction of the first statement, i.e., that the matrix entries are
contained in L2(G). The rest of the proof is somewhat involved and requires tools from functional
analysis. In the interest of getting to examples (i.e., Lie groups), we will not cover it here.

Before doing that, let’s discuss the Fourier transform in the setting of compact groups. Recall
that for finite groups, the Fourier transform was a basis-change transformation on CG, taking us
from the basis of group elements to the Fourier basis of matrix entries of irreducible representations
of G. While there is no obvious “group basis” in the general compact case, there is still the Fourier
basis (as given by the Peter-Weyl theorem.) Starting with a function f ∈ L2(G), we expand f in
the orthonormal basis specified by the theorem and Equation 2.2. The coefficients of the expansion
form the Fourier transform of f , as follows.

〈f |ρij〉 =

∫
G
f(x)ρij(x) dµ(x) .

We then collect together the coefficients corresponding to a particular irreducible representation,
and define

f̂(ρ) =
√
dρ

∫
G
f(x)ρ(x)† .

We can then define the Fourier transform of f as before:

F : L2(G) −→
⊕
ρ∈Ĝ

Mdρ(C)

f 7−→
⊕
ρ∈Ĝ

f̂(ρ) . (2.3)

The Fourier inversion formula is again computed by expressing the “basis change” in a way that
does not require choosing bases for the irreducible representations. It is as follows.

f(g) =
∑
ρ∈Ĝ

dρ∑
i,j=1

〈f |ρ′ij〉ρ′ij(g)

=
∑
ρ∈Ĝ

√
dρ

dρ∑
i,j=1

f̂(ρ)jiρij(g)

=
∑
ρ∈Ĝ

√
dρ Tr

[
f̂(ρ)ρ(g)

]
.

A little bit of caution is called for here: the above expansion is actually a series, and not a sum
(since, in general, Ĝ is countably infinite.) However, by the Peter-Weyl theorem, if f is in L2(G),
the series will necessarily converge.
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Recall that, for finite groups, the Fourier transform was actually an isomorphism of algebras.
Is that still true here? Let’s define convolution and see. For f, g ∈ L2(G), define

[f ∗ g](x) =

∫
G
f(y)g(y−1x) dµ(y) .

Now let’s compute the Fourier transform of a convolution.

f̂ ∗ g(ρ) =
√
dρ

∫
G

[f ∗ g](x)ρ(x)† dµ(x)

=
√
dρ

∫
G

∫
G
f(y)g(y−1x)ρ(x−1) dµ(x) dµ(y)

=
√
dρ

∫
G

∫
G
f(y)g(y−1x)ρ(x−1yy−1) dµ(x) dµ(y)

=
√
dρ

∫
G
g(z)ρ(z−1) dµ(z)

∫
G
f(y)ρ(y−1) dµ(y)

=
1√
dρ
ĝ(ρ) · f̂(ρ) ,

We conclude that the Peter-Weyl isomorphism is in fact also an isomorphism of algebras, mapping
convolution to matrix product.

2.1.4 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. Prove that SO(2) = {M ∈ M2(R) : M trM = 1, detM = 1} is isomorphic to the circle group
S1 = {eiθ : 0 ≤ θ < 2π}.

2. Find all the irreducible representations of SO(2). Write down the Fourier transform and the
Fourier inversion formula for this group.

3. Write down generators and relations for the group D∞ consisting of all origin-preserving
rotations and reflections of the plane. Describe the generators explicitly in geometric terms:
what is their action on the plane? Find all the irreducible representations of D∞.

4. Prove Maschke’s Theorem for compact groups: given a representation ρ of a compact group
G and an invariant subspace W , there exists another invariant subspace W ′ such that ρ =
ρ|W ⊕ ρ|W ′ .

5. Let (ρ, Vρ) be a representation of a compact group G. Prove that there is an inner product
on Vρ such that ρ is a unitary representation.

6. Please list all of the typos and mistakes that you found in the lecture notes and exercises in
this Section. Thanks!

2.2 Matrix Lie groups

For the rest of the course, we will study the (arguably) most important examples of compact groups,
and their representation theory. These are the compact Lie groups. In order to minimize the course



36 CHAPTER 2. COMPACT GROUPS

requirements, I have decided to study these groups from the matrix group point of view. We will
be following the excellent text of B. Hall [1]. Unfortunately, due to the compressed schedule of
the course, we will have to skip many of the parts of this text in order to reach the interesting
representation-theoretic constructions.

2.2.1 Definition and basic examples

We begin with a few basic definitions. We let Mn(C) denote the space of all n×n complex matrices,
which we will sometimes identify with the usual complex Euclidean space Cn

2
. This gives Mn(C)

a topology, and in particular a notion of open and closed sets. We let GLn(C) denote the subset
of all n× n invertible matrices, and we let GLn(R) denote the subset of those which only have real
entries. We give both of these spaces the subspace topology inherited from Mn(C).

Definition 2.2.1. A matrix Lie group is a closed subgroup G of GLn(C).

In place of saying that the subgroup should be closed, we can also ask that it contains its limit
points, in the following sense. If An is a sequence of matrices in Mn(C), we say that An converges
to a matrix A as n → ∞ if it does so entrywise, i.e., if the j, k entry of An converges to Aj,k for
all j, k. That G is a closed subgroup of GLn(C) is then equivalent to saying that the limit of any
sequence of matrices in G is either in G, or is not invertible. For an example of a subgroup of
GLn(C) which is not closed, take the subgroup of matrices with rational entries. It’s then clear
that there are limits of such matrices which are invertible, but are not in the subgroup.

Next, we will familiarize ourselves with the most important examples, beginning with the general
and special linear groups. Recalling that the entire space itself is always closed in its topology, we
see that GLn(C) satisfies the definition of a matrix Lie group. We call it the general linear
group. Moreover, since the limit of matrices with real entries has real entries, GLn(R) is also
a matrix Lie group. You have already encountered several examples. The group R∗ of nonzero
real numbers (under multiplication) is isomorphic to GL1(R). Likewise, the group C∗ of nonzero
complex numbers (under multiplication) is isomorphic to GL1(C). The vector space Rn (as a group
under vector addition) can be viewed as a closed subgroup of GLn(R) via the map

(x1, x2, . . . , xn) 7−→

e
x1 0

. . .

0 exn

 .

Recall that the determinant of an n× n matrix A is defined by

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
j=1

Ai,σ(i) ,

Here the sum runs over all permutations of n, and sgn(σ) denotes the signature of the permutation
σ. If σ is a product of an even number of transpositions, then sgn(σ) = 1; otherwise it is −1. An
equivalent definition is that det(A) is the product of the eigenvalues of A (with multiplicity.) The
latter definition makes it clear that the determinant is a continuous function of A; in particular,
limits of matrices with determinant one will also have determinant one. We can thus define the
special linear groups SLn(C) and SLn(R), consisting of invertible matrices with determinant one,
with matrix entries from the appropriate field.

We have already encountered unitary matrices. It turns out that they also form a Lie group.
Before, defined the unitary matrices to be the matrices A ∈ Mn(C) which satisfy A†A = 1. Here
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A† denotes the adjoint of A, i.e., the conjugate-transpose of A, with matrix entries

A†ij = Aji .

Recall that this is equivalent to requiring that A preserves the standard inner product

〈v|w〉 =
∑
j

vjw
∗
j

on Cn. After all,

〈Av|Aw〉 = 〈A†Av|w〉 = 〈v|w〉 .

Note that, since A†A = 1, the matrix A has an inverse, namely A†. Hence the unitary matrices
form a subset of GLn(C). To see that it is a subgroup, we check that

(AB)†(AB) = B†A†AB = 1 and (A−1)†A−1 = AA† = 1 .

We can thus define the unitary group U(n) to be the subgroup of GLn(C) consisting of unitary
matrices. We also define the special unitary group SU(n) to be the subgroup of unitary matrices
with determinant one.

A matrix A ∈ Mn(R) is said to be orthogonal if AtrA = 1, where Atr denotes the transpose
of A, with matrix entries

Atr
ij = Aji .

We see that orthogonal matrices have inverses, since AtrA = 1 implies A−1 = Atr. We can thus
define the orthogonal group O(n) to be the subgroup of GLn(R) consisting of all orthogonal
matrices. We also define the special orthogonal group SO(n) to be the subgroup of orthogonal
matrices with determinant one. We have already encountered SO(2) and SO(3) in the previous
section, so we know that they consist of all rigid origin-preserving rotations of the corresponding
Euclidean spaces.

There are many more examples of Lie groups, with plentiful applications. We may encounter
some other examples later in the course.

2.2.2 Topological properties

For now, we will discuss only three simple topological properties which a matrix Lie group may
have. They are compactness, connectedness, and simple-connectedness. The first two you have
encountered already.

Definition 2.2.2. A matrix Lie group G is said to be compact if it is a compact set as a subset
of Mn(C) .

Recall that since Mn(C) is topologically equivalent to the Euclidean space Cn
2
, a subset of

Mn(C) is compact if and only if it is closed and bounded. Note that closure is now required inside
Mn(C); the property of being a matrix Lie group only required closure inside GLn(C). Taken
together, this means that compactness is equivalent to two conditions: there must be a universal
constant which bounds the matrix entries of all elements in G, and limits of sequences of matrices
in G must lie in G.

In the exercises, you will show that unitary and orthogonal matrices have bounded matrix
entries. This will establish boundedness. To see closedness, one can express the defining conditions
(e.g., A†A = 1) in terms of matrix entries, and show that this property is closed under taking limits
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(in Mn(C), not just GLn(C).) To see that several of our examples above are not compact, consider
the following sequence of matrices in SLn(R):

An :=


m

1/m

1
. . .

1

 .

For connectedness, we will use a slightly different definition from what you might expect. It
is called path-connectedness, and it turns out to be equivalent to connectedness (for matrix Lie
groups, but not in general.)

Definition 2.2.3. A matrix Lie group G is said to be connected if for all A,B ∈ G there exists
a continuous path A(t) in G such that A(0) = A and A(1) = B.

Given an element A ∈ G, we say that the connected component of A is the set of all B ∈ G
such that a path B(t) exists which satisfies B(0) = A and B(1) = B. Note that the property of
being connected by a path is transitive. To prove connectedness for a matrix Lie group G, it is
thus sufficient to show that every A ∈ G is connected to the identity 1 via a continuous path.

We first show that GLn(C) is connected. Fix A ∈ GLn(C) and recall that every matrix is similar
to an upper triangular matrix with the eigenvalues on the diagonal. Since A is invertible, it follows
that there exists invertible C such that A = CBC−1 with

B =

λ1 ∗
. . .

λn

 ,

with each λj is nonzero. Define a path A(t) = CB(t)C−1 where B(t)ii = Bii and B(t)ij = (1−t)Bij
for i 6= j. We now have that A(1) = CDC−1 where D = B(1) is a diagonal matrix with entries the
λj . Since C is path-connected, we can define for each j a path from λj to 1. This gives a path from
D to the identity, and thus also a path from A to the identity. To adapt to the case of SLn(C),
we need to ensure that the second part of the path above maintains the property that

∏
j λj = 1.

This is easily done by choosing arbitrary paths (to 1) λj(t) for 1 ≤ j ≤ n− 1 and setting

λn−1(t) =
1∏

j λj(t)
. (2.4)

For the unitary groups, we use the fact that any unitary matrix has an orthonormal basis of
eigenvectors, with eigenvalues having absolute value one. Given A ∈ U(n), let A = UDU−1 be
the corresponding decomposition into a diagonal matrix D (with entries of the form λj = eiθj )
conjugated by some other unitary U . We then define a path A(t) = UD(t)U−1 which will send
each diagonal element of D to 1 via the path λj(t) = ei(1−t)θj . To adapt to the case of SU(n), we
again choose arbitrary paths for the first n − 1 eigenvalues and choose the nth path as in (2.4).
You will show that the group SO(n) is connected in the exercises.

We end with the notion of simple-connectedness.

Definition 2.2.4. A matrix Lie group G is said to be simply connected if it is connected, and
every loop in G can be continuously deformed to a point in G.
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By a loop, we mean a path A(t) from a group element A to itself, i.e. A(0) = A(1) = A.
One can continuously deform paths to one another by adding an additional parameter s which also
varies from 0 to 1. In our case, we are only interesteded in deforming loops to a point. In that case,
this means that A(t, s) is a continuous family of loops (i.e., continuous in both t and s) such that
A(0, s) = A(1, s) = A for all s, and A(t, 0) = A(t) and A(t, 1) = A all t. In the exercises you will
show that SU(2) is topologically equivalent to the complex two-sphere, which is simply connected.

2.2.3 Lie group homomorphisms

The notion of homomorphism and isomorphism is the same as for general topological groups.

Definition 2.2.5. Let G and H be matrix Lie groups. A map Φ : G → H is called a Lie group
homomorphism if it is a continuous group homomorphism. If it is also bijective with continuous
inverse, then it is called a Lie group isomorphism.

If G and H are matrix Lie groups and there exists a Lie group isomorphism Φ : G → H, then
we will say that G and H are isomorphic. We’ve already seen two simple examples of Lie group
homomorphisms, namely the determinant

det : GLn(C)→ C∗

and the map from R to SO(2) defined by

r 7→

(
cos r − sin r

sin r cos r

)
.

These are both easily checked to be continuous homomorphisms.

Let’s now consider a more complicated and interesting example, concerning SU(2) and SO(3).
Recall that the group SO(3) consists of all rigid rotations of R3; equivalently, it is the group of
inner-product-preserving transformations of R3 which have determinant one. For this example, we
will think about R3 in a slightly different way. Specifically, we will identify R3 with the real vector
space

V := {X ∈M2(C) : X† = X and Tr[X] = 0} .

The identification is given by the map

(x1, x2, x3) 7−→

(
x1 x2 + ix3

x2 − ix3 −x1

)
.

You should check that the matrices of the form given on the right hand side of this identification are
precisely all of the matrices in V . It’s also straightforward to check that this is an inner-product-
preserving identification, where we take the usual inner product on R3 and the inner product

〈X1|X2〉 =
1

2
Tr[X1X2]

on V . Now we define an action of SU(2) on V by defining, for each U ∈ SU(2),

ΦU : V → V

X 7→ UXU−1 .
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One easily checks that UXU−1 is again in V whenever U ∈ SU(2), and that ΦU1U2 = ΦU1ΦU2 , so
that this is indeed a valid action of SU(2) on V . We also check that

〈UX1U
−1|UX2U

−1〉 = 〈X1|X2〉

for every X1, X2 ∈ V , i.e., that the map ΦU is inner-product preserving for each U ∈ SU(2). Taken
together, this means that Φ is a homomorphism from SU(2) to O(3). It’s also continuous, and thus
a Lie group homomorphism. We checked before that SU(2) is connected; in the homework, you
will show that O(3) is not connected and that SO(3) is the connected component of the identity.
Recalling that continuous functions map connected spaces to connected spaces, we can write

Φ : SU(2)→ SO(3)

U 7→ ΦU

as a Lie group homomorphism.

Proposition 2.2.1. The map U 7→ ΦU is a two-to-one and onto map of SU(2) to SO(3).

Proof. To show that the map is two-to-one, we compute the kernel. We check that, if UXU−1 = X
for all X, then U commutes with all elements of V ; in fact, it must commute with all of M2(C).
This is equivalent to being a scalar multiple of the identity, and since we’re in SU(2) it is equivalent
to being 1 or −1. Hence Φ is a two-to-one map.

To see that it is onto, first observe that any element of SO(3) can be expressed as a planar
rotation by angle θ about some eigenvector X (which we will think of as lying in V ). If we
diagonalize X, we can write it as

X = V

(
x1 0

0 −x1

)
V −1

for some V ∈ U(2). The plane orthogonal to X (again viewed in V ) is the space of matrices of the
form

Y = V

(
0 x2 + ix3

x2 − ix3 0

)
V −1 .

Now set

U = V

(
eiθ/2 0

0 e−iθ/2

)
V −1

and observe that U ∈ SU(2), and that UXU−1 = X. Let’s see how U acts on the plane orthogonal
to X; this amounts to computing UY U−1, which yields

UY U−1 = V

(
0 eiθ(x2 + ix3)

e−iθ(x2 − ix3) 0

)
V −1 .

Expanding eiθ = cos θ + i sin θ, it’s straightforward to check that the above action corresponds to
rotating the (x2, x3) plane by angle θ.



2.3. MATRIX EXPONENTIAL AND MATRIX LOGARITHM 41

2.2.4 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. Prove that a complex matrix is unitary if and only if its column vectors are orthonormal under
the standard inner product on Cn. Conclude that the matrix entries of a unitary matrix A
satisfy |Ajk| ≤ 1. Prove that if A is a unitary matrix, then | detA| = 1.

2. Prove that a real matrix is orthogonal if and only if its column vectors are orthonormal under
the standard inner product on Rn. Conclude that the matrix entries of an orthogonal matrix
A satisfy |Ajk| ≤ 1. Prove that if A is orthogonal, then det(A) = ±1 .

3. Prove that the groups U(n) and O(n) are closed as subsets of GLn(C), and are thus matrix
Lie groups.

4. Show that SO(n) is path-connected.

5. Show that O(n) is not connected. How many connected components does it have, and what
are they?

6. Show that there is a bijection between SU(2) and the complex two-sphere, i.e., {α, β ∈ C :
|α|2 + |β|2 = 1}, via the map

(α, β) 7−→

(
α −β̄
β ᾱ

)
.

Conclude that SU(2) is simply-connected.

7. Please list all of the typos and mistakes that you found in the lecture notes and exercises in
this Section. Thanks!

2.3 Matrix exponential and matrix logarithm

The exponential mapping plays a crucial role in the point of view we will take on the representation
theory of Lie groups. In fact, it’s an integral part of Lie theory in general. We first define the
exponential of a matrix, simply by generalizing the usual power series defining the exponential
function.

Definition 2.3.1. The exponential of a matrix X ∈Mn(C) is the matrix

exp(X) =
∞∑
m=0

Xm

m!
.

We need to check that this series actually converges. This can be done using the matrix norm
on Mn(C) which you have already encountered:

‖X‖2 = Tr[X†X]1/2 .

This is sometimes called the Hilbert-Schmidt norm. By Cauchy-Schwarz, it satisfies ‖XY ‖ ≤
‖X‖‖Y ‖ for all X,Y ∈ Mn(C). It’s easy to check that a sequence Xm of matrices converges to a
matrix X if and only if ‖Xm −X‖ converges to zero. Note that

∞∑
m=0

∥∥∥∥Xm

m!

∥∥∥∥ ≤ ∞∑
m=0

‖X‖m

m!
<∞
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by the convergence of the usual exponential function. To show continuity of exp, observe that
the partial sums of the series are continuous. The Weierstrass M-test then tells us that the entire
series converges uniformly on bounded sets; by the uniform limit theorem, exp is continuous on all
bounded sets, and hence on all of Mn(C).

We now list several basic properties of the exponential map, which you will prove in the home-
work. We will sometimes write exp(X) as eX instead; they mean the same thing.

1. exp(0) = 1.

2. (exp(X))† = exp(X†).

3. exp(X) is invertible, with inverse exp(−X).

4. exp(a+ bX) = exp(aX) exp(bX) for all a, b ∈ C.

5. If XY = Y X then eX+Y = eXeY = eY eX .

6. If C is invertible, then eCXC
−1

= CeXC−1.

7. If X is diagonalizable, then so is eX , and det[eX ] = eTr[X].

We will also need the following property, which is arrived at by differentiating the power series
for etX term-by-term, and entry-by-entry.

Proposition 2.3.1. Let X ∈Mn(C). Then etX is a smooth curve in Mn(C) and

d

dt
etX = XetX = etXX

An immediate consequence of the Proposition is that

d

dt
etX
∣∣∣∣
t=0

= X .

Definition 2.3.2. For a matrix A ∈Mn(C), define logA to be

logA =

∞∑
m=1

(−1)m+1 (A− 1)m

m

whenever the series converges.

Theorem 2.3.1. The function log(·) is defined and continuous on

Bn(1; 1) := {A ∈Mn(C) : ‖A− 1‖2 < 1}.

For A ∈ Bn(1; 1) we have elogA = A. For X satisfying ‖X‖ < log 2, ‖eX −1‖ < 1 and log eX = X.

Proof. For the first part, we proceed just as with the exponential mapping. Since ‖(A − 1)m‖2 ≤
‖A−1‖m2 , absolute convergence of the series defining the matrix logarithm (for ‖A−1‖ < 1) follows
from absolute convergence of the series defining the usual logarithm (for |z− 1| < 1). Convergence
and continuity now follows by the same arguments as before.
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Now let A ∈ Bn(1; 1), and suppose for the moment that it is diagonalizable, with eigenvalues
λ1, . . . , λn. Then there is an invertible C such that

(A− 1)m = C

(λ1 − 1)m 0
. . .

0 (λn − 1)m

C−1 .

Since A ∈ Bn(1; 1), the eigenvalues λj satisfy |λj − 1| < 1 (check this by showing that the operator
norm is bounded by the Hilbert-Schmidt norm), and so we can write

logA = C

log λ1 0
. . .

0 log λn

C−1 .

By the properties of the exponential given above, we conclude that elogA = A. Finally, we can ap-
proximate non-diagonalizable A by a sequence of diagonalizable matrices, and apply the continuity
of exp and log.

A very similar argument to the above proves the remaining part of the theorem, this time
appealing to the fact that the standard complex logarithm satisfies log(exp v) = v for |v| < log 2.

Here’s an application of the matrix logarithm which will be quite useful. As it turns out, there
is still much we can say about eX+Y even in the case where X and Y do not commute. One
important result in this direction is the Lie Product Formula (also known as the Trotter product
formula.) We state it here; for a proof, see [1].

Theorem 2.3.2. For all X,Y ∈Mn(C), we have

eX+Y = lim
m→∞

(
eX/meY/m

)m
.

2.3.1 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. Prove properties (1)-(7) of the exponential mapping.

2. Please list all of the typos and mistakes that you found in the lecture notes and exercises in
this Section. Thanks!

2.4 Lie Algebras

2.5 Basic definitions

We begin with an abstract definition of Lie algebras.

Definition 2.5.1. A finite-dimensional Lie algebra is a finite-dimensional vector space g together
with a map [·, ·] : g× g→ g which:

1. is bilinear: [aX, Y ] = [X, aY ] = a[X,Y ] for all scalars a and X,Y ∈ g;
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2. is skew-symmetric: [X,Y ] = −[Y,X] for all X,Y ∈ g;

3. satisfies the Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ g.

If the vector space is over R, then we say that g is a real Lie algebra; if it is over C, then we say
that g is a complex Lie algebra. The operation [·, ·] is called the bracket of g. If X and Y satisfy
[X,Y ] = 0, then we say that they commute. The center of a Lie algebra g is the set of all X ∈ g
such that [X,Y ] = 0 for all Y ∈ g. If the center is equal to the entire Lie algebra, then we say that
the Lie algebra is commutative.

One way to construct Lie algebras is to start with an associative algebra. Recall that an
associative algebra (for us) is simply a finite-dimensional vector space with an associative product.
Let A be an associative algebra and let g be a subspace of A such that XY − Y X ∈ g for all
X,Y ∈ g. Then it’s easy to check that g is a Lie algebra with the bracket

[X,Y ] = XY − Y X .

Verifying the Jacobi identity is a little bit of work, but is useful to do, because it illustrates that
associativity of the algebra is crucial.

Definition 2.5.2. A Lie subalgebra of a Lie algebra g is a subspace h of g which is closed under
the bracket operation.

We remark that there is an ambiguity in this definition: it is possible to consider a real Lie
subalgebra of a complex Lie algebra. We will emphasize this with more specific language when
necessary.

For an example of Lie subalgebras, consider the Lie algebra Mn(C) of all complex matrices with
the bracket operation [X,Y ] = XY −Y X, and take the subspace sln(C) of matrices with zero trace.
Since the bracket of any pair X,Y satisfies Tr[[X,Y ]] = Tr[XY − Y X] = Tr[XY ] − Tr[Y X] = 0,
we see that sln(C) is a Lie subalgebra of Mn(C).

One can also build many examples by taking direct sums of Lie algebras.

Definition 2.5.3. If g1 and g2 are Lie algebras, the direct sum of g1 and g2 is the Lie algebra
defined on the vector space g1 ⊕ g2 by the bracket

[X1 ⊕X2, Y1 ⊕ Y2] = [X1, X2]⊕ [Y1, Y2] .

We may also ask when a Lie algebra g is a direct sum of two Lie subalgebras h1 and h2 of g.
This is the case precisely when g is equal to their direct sum as a vector space, and [X1, X2] = 0
for all X1 ∈ h1 and X2 ∈ h2.

If we choose a basis X1, . . . , XN for a Lie algebra g, then the bracket operation can be described
by a set of constants cjkl, where

[Xj , Xk] =
N∑
l=1

cjklXl .

The scalars cjkl are called the structure constants of g. They of course depend crucially on the
choice of basis.
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2.6 Lie algebra homomorphisms

As you might expect, Lie algebra homomorphisms are maps which preserve the bracket operation.

Definition 2.6.1. Let g and h be Lie algebras. A linear map φ : g → h is called a Lie algebra
homomorphism if

φ([X,Y ]) = [φ(X), φ(Y )]

for all X,Y ∈ g. If φ is bijective, then it is called a Lie algebra isomorphism.

An important generic example is the adjoint map. It is a map which associates to each element
X of a Lie algebra g the linear map

adX : g −→ g

Y 7−→ [X,Y ] .

This is analogous to how we can let each element of a finite group act on the group by (say) left
multiplication. The adjoint map itself is ad : g→ End(g), since bracketing by a fixed element is a
linear operation. To show that it is a Lie algebra homomorphism, first note that End(g) is itself a
Lie algebra under the usual bracket. We then need to establish that

ad[X,Y ] = [adX , adY ]

where the left-hand bracket takes place in g and the right-hand bracket takes place in End(g). This
amounts to showing that

ad[X,Y ](Z) = [[X,Y ], Z] = −[Z, [X,Y ]]

is equal to

[adX , adY ](Z) = (adX adY − adY adX)(Z) = [X, [Y,Z]]− [Y, [X,Z]] = [X, [Y, Z]] + [Y, [Z,X]] .

But this is precisely the Jacobi identity.

2.7 The Lie Algebra of a Lie group

We now connect Lie algebras to Lie groups. This will later enable us to study the representations
of both simultaneously.

Definition 2.7.1. Let G be a matrix Lie group. The Lie algebra of G, denoted g, is the
set of all matrices X such that etX is in G for all real numbers t, with the bracket operation
[X,Y ] = XY − Y X.

We must now check that the set defined above is actually a Lie algebra under the given bracket
operation. We will prove this in a few steps. Throughout, it is helpful to recall that etX defined a
smooth curve in Mn(C), whose derivative at t = 0 is X.

Theorem 2.7.1. Let G be a matrix Lie group with Lie algebra g, and X,Y ∈ g. Then

1. AXA−1 ∈ g for all A ∈ G.

2. sX ∈ g for all real s.

3. X + Y ∈ g.
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4. XY − Y X ∈ g.

Proof. For the first claim, we have etAXA
−1

= AetXA−1 ∈ G for all real t, by the properties of the
exponential map we proved previously. The second claim is clear from the definition. For the third
claim, recall the Lie product formula

et(X+Y ) = lim
m→∞

(
etX/metY/m

)m
.

Each term of the sequence on the right is clearly in G, and by closure of G, so is the limit. For the
fourth claim, we use the product rule for smooth matrix-valued functions:

d

dt
[A(t)B(t)] =

dA

dt
B(t) +A(t)

dB

dt
.

We compute the following.

d

dt

(
etXY e−tX

)∣∣∣∣
t=0

= XetXY e−tX − etXY Xe−tX
∣∣
t=0

= XY − Y X .

By the above and the first claim, XY − Y X is the derivative of a smooth curve in g. Since g is
a subspace of Mn(C), it is topologically closed. By the limit definition of the derivative, it follows
that XY − Y X is itself in g.

One nice consequence of the last calculation in the proof is the following. We have that, for
X,Y ∈Mn(C), the commutator is given by

[X,Y ] =
d

dt

(
d

ds
etXesY e−tX

)∣∣∣∣
s,t=0

If G is commutative, then the term inside the derivatives simplifies to esY , and the entire right-hand
side then evaluates to zero. Hence, if G is a commutative matrix Lie group, then its Lie algebra g
is a commutative Lie algebra.

2.7.1 Examples

We now compute the Lie algebras of the basic matrix Lie groups we’ve been studying so far.

Proposition 2.7.1. The Lie algebra of GLn(C) is Mn(C), and the Lie algebra of GLn(R) is Mn(R).
The Lie algebra of SLn(C) is the set of traceless n × n complex matrices, and the Lie algebra of
SLn(R) is the set of traceless n× n real matrices.

We will denote the Lie algebra of GLn(C) by gln(C), and the Lie algebra of SLn(C) by sln(C),
and likewise for the real case.

Proof. First, note that etX is invertible (with inverse e−tX), for any matrix X. Moreover, if X is
real then so is etX . On the other hand, if X is a complex matrix and etX is real for every t, then

X =
d

dt
etX
∣∣∣∣
t=0

must also be real.
For the second part, note that det(etX) = etTr[X] for all X. This is obviously true for diagonal-

izable X, and can be extended to arbitrary X by using the fact that diagonalizable matrices are
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dense. It follows that, if X has trace zero, then etX has determinant one for all t, i.e., X ∈ sln(C).
On the other hand, if X satisfies det(etX) = 1 for all real t, then

Tr[X] =
d

dt
etTr[X]

∣∣∣∣
t=0

=
d

dt
det(etX)

∣∣∣∣
t=0

= 0 .

The same argument works for the case of SLn(R).

Recall that a complex matrix X is called Hermitian if X† = X. We say that a complex matrix
X is skew-Hermitian if it satisfies X† = −X.

Proposition 2.7.2. The Lie algebra of U(n) consists of all skew-Hermitian complex matrices, and
the Lie algebra of SU(n) consists of all skew-Hermitian matrices with trace zero.

We will denote the Lie algebra of U(n) by u(n), and the Lie algebra of SU(n) by su(n).

Proof. For a given real t, the matrix etX is unitary if and only if

(etX)−1 = (etX)† .

The left-hand side is e−tX , and it was checked in the homework that the right-hand side is etX
†
.

By taking the derivative of both sides, we see that that etX is unitary (for all real t) if and only
if X is skew-Hermitian. Just as before, requiring that the group elements have determinant one is
equivalent to requiring that the Lie algebra elements have trace zero.

Proposition 2.7.3. The Lie algebra of O(n) consists of all skew-Hermitian real matrices, and the
Lie algebra of SO(n) is equal to the Lie algebra of O(n)

We will denote the Lie algebra of O(n) by o(n), and the Lie algebra of SO(n) by so(n) (and, as
the proposition says, o(n) = so(n)).

Proof. The proof is essentially the same as in the unitary case. A real matrix etX is orthogonal if
and only if e−tX is equal to its transpose, which in turn is true if and only if Xtr = −X. Within the
space of real skew-Hermitian matrices, Xii = −(Xtr)ii = −Xii, which implies that all the diagonal
entries are zero; in particular, Tr[X] = 0. The additional condition of determinant one in SO(n)
thus does not change the Lie algebra.

It will be convenient to think about low-dimensional examples, and for those examples a (con-
venient) basis can be illuminating. We will use the following basis for su(2):

E1 =
1

2

(
i 0

0 −i

)
E2 =

1

2

(
0 i

i 0

)
E2 =

1

2

(
0 −1

1 0

)
.

This basis satisfies commutation relations [E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.
We will also use the following basis for so(3):

F1 =

0 0 0

0 0 −1

0 1 0

 F2 =

 0 0 1

0 0 0

−1 0 0

 F3 =

0 −1 0

1 0 0

0 0 0

 .

This basis satisfies commutation relations [F1, F2] = F3, [F2, F3] = F1, and [F3, F1] = F2.
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2.7.2 Relationship between Lie group and Lie algebra homomorphisms

We now see how to construct a Lie algebra homomorphism from a homomorphism of the corre-
sponding Lie groups.

Theorem 2.7.2. Let G and H be matrix Lie groups, and suppose Φ : G → H is a Lie group
homomorphism. Then there exists a unique linear map φ : g → h satisfying Φ(eX) = eφ(x) for all
X ∈ g. It also satisfies the following properties.

1. φ(AXA−1) = Φ(A)φ(X)Φ(A)−1 for all X ∈ g and all A ∈ G;

2. φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ g;

3. φ(X) = d
dtΦ(etX)|t=0 for all X ∈ g.

Proof. Let X ∈ g. The set {etX : t ∈ R} is clearly a subgroup of G; for obvious reasons, such
subgroups are called one-parameter subgroups. We claim that the image of this subgroup of G
under the map Φ is another one-parameter subgroup; more precisely, we claim that there exists Z
such that Φ(etX) = etZ . This may seem obvious, but it does in fact require proof, which makes use
of the matrix logarithm (see Theorem 2.14 in [1].) One consequence is that we can compute Z by

Z =
d

dt
Φ(etX)

∣∣∣∣
t=0

.

We set φ(X) = Z, which satisfies the third property. By setting t = 1 we also see that Φ(eX) = eZ

for all X ∈ g. We now need to check properties one and two, and verify linearity and uniqueness.
For linearity, note that Φ(et(sX)) = et(sZ which implies φ(sX) = sZ = sφ(X). Given X and Y

in g, we use the Lie product formula (twice) and continuity of Φ to compute

etφ(X+Y ) = Φ(et(X+Y )) = Φ
(

lim
m→∞

(etX/metY/m)m
)

= lim
m→∞

(
Φ(etX/m)Φ(etY/m)

)m
= lim

m→∞

(
etφ(X)/metφ(Y )/m

)m
= et(φ(X)+φ(Y ))

Differentiating both sides at t = 0 yields φ(X + Y ) = φ(X) + φ(Y ), which establishes linearity of
φ.

To show uniqueness, suppose that there were another linear map φ′ : g→ h with the property
that Φ(eX) = eφ

′(X) is true for all X ∈ g. By linearity, it would follow that etφ(X) = etφ
′(X) for all

t, and differentiating both sides at t = 0 yields φ(X) = φ′(X).
To verify property 1, note that, for any A ∈ G,

etφ(AXA
−1) = Φ(etAXA

−1
) = Φ(A)Φ(etX)Φ(A)−1 = Φ(A)etφ(X)Φ(A)−1 .

Now again we differentiate both sides at t = 0.
To verify property 2, we pick X,Y ∈ g, and recall that the commutator can be defined via the

differential, so that

φ([X,Y ]) = φ

(
d

dt
etXY e−tX

∣∣∣∣
t=0

)
=

d

dt
φ(etXY e−tX)

∣∣∣∣
t=0

=
d

dt
Φ(etX)φ(Y )Φ(e−tX)

∣∣∣∣
t=0

=
d

dt
eφ(tX)φ(Y )e−φ(tX))

∣∣∣∣
t=0

= [φ(X), φ(Y )] ,

where we used property 1 in the third step.
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For an example of this theorem, recall the “double-cover” Lie group homomorphism Φ : SU(2)→
SO(3). To compute the corresponding Lie algebra homomorphism φ : su(2) → so(3), we use the
third property. Let X ∈ su(2) and Y ∈ V . Recalling the action of SU(2) on V , we have

d

dt
Φ(etX)Y

∣∣∣∣
t=0

=
d

dt
etXY e−tX

∣∣∣∣
t=0

= [X,Y ] .

So the corresponding action of su(2) on V is the bracket action: X acts on V by Y 7→ [X,Y ]. You
will calculate what this action is explicitly in the homework.

2.7.3 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. Let Φ : SU(2)→ SO(3) be the “double-cover” matrix Lie group homomorphism discussed in
the lecture. Calculate the images of the basis elements E1, E2, E3 of su(2) under the induced
Lie algebra homomorphism φ : su(2)→ so(3).

2. Please list all of the typos and mistakes that you found in the lecture notes and exercises in
this Section. Thanks!

2.8 Representations of Lie Groups and Lie Algebras

We now define notions of representations for both Lie groups and Lie algebras, and discuss how
the two are connected. First, recall that if V is a finite-dimensional real or complex vector space,
then (given a basis choice for V ), the group GL(V ) is a matrix Lie group. A basis choice for V also
gives the algebra gl(V ) := End(V ) of all linear operators on V the structure of a Lie algebra, with
the standard bracket [X,Y ] = XY − Y X. It’s not hard to check that this basis choice is largely
irrelevant, since different basis choices yield isomorphic Lie groups and isomorphic Lie algebras.
This allows us to make the following definitions.

Definition 2.8.1. A representation of a matrix Lie group G is a Lie group homomorphism

Π : G→ GL(V )

for some finite-dimensional real or complex vector space V . A representation of a real or complex
Lie algebra g is a Lie algebra homomorphism

π : g→ gl(V )

for some finite-dimensional real or complex vector space V .

We say that the representation in question is real (resp. complex) if the relevant vector space V
is defined over the real (resp., complex) numbers. Just as before, we will frequently think of each
representation as defining an action of the Lie group (or of the Lie algebra) on the vector space V ,
and will use the corresponding terminology to talk about group elements (or algebra elements) as
acting on vectors in V . Of course, in one case the action will be the left-action, while in the other
case the action will be the bracket action.

Many representation-theoretic notions we encountered in the setting of finite groups and general
compact groups carry over naturally and immediately to the setting of Lie groups and Lie algebras.
Some of these (using notation as in Definition 2.8.1) are:
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• faithful: a Lie group (or Lie algebra) representation is called faithful if it is a one-to-one
(i.e., injective) homomorphism.

• matrix representation: a choice of basis for V turns any Lie group (or Lie algebra) repre-
sentation into a matrix representation, whereby each (group or algebra) element is mapped
to a matrix.

• invariant, nontrivial, irreducible: given a choice of Lie representation, a subspace W of
V is called invariant if it is preserved under the action of the representation. It is called
nontrivial if it is neither equal to the 0 subspace nor to V itself. The representation on V is
said to be irreducible if it contains no nontrivial invariant subspaces.

• intertwiners, isomorphism: Given two representations (Π, V ) and (Σ,W ) of a matrix Lie
group G, a linear map f : V → W satisfying fΠ(g) = Σ(g)f for all g ∈ G is called an
intertwiner. If f is invertible, then we say that Π and Σ are isomorphic as representations.
The notions of intertwiner and representation isomorphism are defined analogously for Lie
algebra representations.

• direct sums: Given representations (Π, V ) and (Σ,W ) of a matrix Lie group G, we define
their direct sum (Π ⊕ Σ, V ⊕W ) by setting [Π ⊕ Σ](g) = Π(g) ⊕ Σ(g). Direct sums for Lie
algebra representations are defined similarly.

Next, we record a straightforward consequence of Theorem 2.7.2 to representations. This fact
will be crucial in developing a connection between the representation theory of a matrix Lie group
G and the representation theory of its Lie algebra g.

Corollary 2.8.1. Let G be a matrix Lie group with Lie algebra g and Π a representation of G.
Then there is a unique representation π of g such that Π(eX) = eπ(X) for all X ∈ g. It is computed
by

π(X) =
d

dt
Π(etX)

∣∣∣∣
t=0

and satisfies π(AXA−1) = Π(A)π(X)Π(A)−1 for all X ∈ g and all A ∈ G.

Returning to previously-encountered concepts from representation theory, we now consider the
tensor product. Given a representation (Π, V ) of a matrix Lie group G, and a representation
(Σ,W ) of a matrix Lie group H, we define a representation (Π⊗Σ, V ⊗W ) of the matrix Lie group
G × H by setting [Π ⊗ Σ](g, h) = Π(g) ⊗ Σ(h). By Corollary 2.8.1, the representation Π ⊗ Σ of
G×H corresponds to a unique representation (which we will denote by π ⊗ σ) of the Lie algebra
of G ×H, which is g ⊕ h (you will prove this in the Exercises). To compute this, first check that
the derivative of the tensor product satisfies the following product rule:

d

dt
(u(t)⊗ v(t)) =

du

dt
⊗ v(t) + u(t)⊗ dv

dt
.
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We then compute

[π ⊗ σ](X ⊕ Y ) =
d

dt
[Π⊗ Σ]

(
et(X⊕Y )

)∣∣∣∣
t=0

=
d

dt
[Π⊗ Σ]

(
etX , etY

)∣∣∣∣
t=0

=
d

dt
Π
(
etX
)
⊗ Σ

(
etY
)∣∣∣∣
t=0

=

(
d

dt
Π
(
etX
))
⊗ Σ

(
etY
)

+ Π
(
etX
)
⊗
(
d

dt
Σ
(
etY
))∣∣∣∣

t=0

= π(X)⊗ 1 + 1⊗ σ(Y ) .

Motivated by this calculation, we define, in general, the tensor product π ⊗ σ of two Lie algebra
representations π of g and σ of h to be the representation of g⊕ h defined by

[π ⊗ σ](X ⊕ Y ) = π(X)⊗ 1 + 1⊗ σ(Y ) .

Why could we not define it to be simply π(X)⊗ σ(Y )?
Following the above, we also define the tensor product of representations of the same group

(or algebra). Specifically, given representations Π and Σ of a Lie group G, we define the tensor
product representation Π⊗Σ of G by [Π⊗Σ](A) = Π(A)⊗Σ(A). Likewise, given representations
π and σ of a Lie algebra g, we define the tensor product representation π⊗ σ of g by [π⊗ σ](X) =
π(X)⊗ 1 + 1⊗ σ(X).

Before we continue, we’ll need the following fact. We only sketch the proof here; for a complete
proof, see Corollary 3.47 (and the results referenced therein) of [1].

Theorem 2.8.1. Let G be a connected matrix Lie group, and A ∈ G. Then A = eX1eX2 · · · eXm
for some X1, X2, . . . , Xm ∈ g.

Proof. (Sketch) The proof proceeds as follows.

1. using the properties of the matrix exponential and the matrix logarithm established in pre-
vious sections, prove that there exists 0 < ε < log 2 such that the following holds for all
B ∈ Vε := exp({X ∈Mn(C) : ‖X‖ < ε}): B ∈ G if and only if logB ∈ g.

2. using the connectedness of G, choose a continuous path A(t) such that A(0) = 1 and A(1) =
A. Using the previous fact, show that there exists δ > 0 such that |s − t| < δ implies that
A(s)−1A(t) ∈ Vε and hence there exists X ∈ g such that A(s)−1A(t) = exp(X).

3. divide [0, 1] into m segments of length δ and expand

A = A(0)−1A(1) = A(0)−1A(1/m)A(1/m)−1A(2/m) · · ·A(1) .

Choosing the appropriate Xj so that exp(Xj) = A(j/m)−1A((j+1)/m) yields the final result.

The above theorem is necessary in the following.

Proposition 2.8.1. A representation Π of a connected matrix Lie group G is irreducible if and
only if the corresponding representation π of the Lie algebra g is irreducible.



52 CHAPTER 2. COMPACT GROUPS

Proof. We first assume that Π is irreducible, and let W be a subspace which is invariant under the
action of π. By Theorem 2.8.1, any A ∈ G can be written as A = eX1eX2 · · · eXm for some Xj ∈ g.
Since W is invariant under π(Xj), it will also be invariant under exp(π(Xj)). By Corollary 2.8.1,
W is also invariant under

Π(A) = Π(eX1eX2 · · · eXm) = Π(eX1)Π(eX2) · · ·Π(eXm) = eπ(X1)eπ(X2) · · · eπ(Xm) .

By the irreducibility of Π, we conclude that W is trivial, and hence that π is also irreducible.
For the other direction, we begin with the assumption that π is irreducible, and we choose a

subspace W which is invariant under the action of Π. For every X ∈ g, W is invariant under
Π(etX), and hence also under

π(X) =
d

dt
Π(etX)

∣∣∣∣
t=0

.

It follows that Π is irreducible.

Proposition 2.8.2. Two representations Π1,Π2 of a connected matrix Lie group G are isomorphic
if and only if the corresponding representations π1, π2 of the Lie algebra g are isomorphic.

Proof. See Exercises.

Examples.

• trivial representation. Every matrix Lie group G has a trivial representation G→ GL1(C)
defined by A 7→ 1 for all A ∈ G. For Lie algebras, the trivial representation g → gl1(C) is
defined by X 7→ 0 for all X ∈ G.

• standard representation. Every matrix Lie group G has a standard representation, where
each element is represented by itself. This representation is simply the inclusion map G ↪→
GLn(C). If the Lie group is real, then the standard representation can also be viewed as the
inclusion G ↪→ GLn(R), yielding a real representation. The standard representation of Lie
algebras is defined in the same way.

• adjoint representation. Recall the following example of a Lie algebra homomorphism: the
adjoint map. It is defined to be the homomorphism ad : g → End(g) = gl(g) defined by
setting, for each X ∈ g,

adX : g→ g

Y 7→ [X,Y ] .

The map ad : g→ gl(g) is clearly a Lie algebra representation.

We can define an analogous representation for matrix Lie groups. If G is a matrix Lie group
with Lie algebra g, then for each A ∈ G we define AdA : g→ g by setting AdA(X) = AXA−1.
The map Ad : G→ GL(g) defined by A 7→ AdA is then a Lie group representation.

What is the relationship between these two representations? This is easy to compute:

adX(Y ) =
d

dt
AdetX (Y )

∣∣∣∣
t=0

=
d

dt
etXY e−tX

∣∣∣∣
t=0

= [X,Y ] .

In other words, ad is precisely the unique Lie algebra representation corresponding to the Lie
group representation Ad.
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The representations of SU(2) and sl2(C). We now consider a more detailed example. Consider
the matrix Lie group SU(2), and let Vm be the vector space of homogeneous polynomials of degree
m in two complex variables. Each U ∈ SU(2) defines a representation Πm on Vm by

[Πm(U) · f ](z) = f(U−1z)

where z = (x, y) is the vector consisting of formal (complex) variables. Let’s check this directly.
Each element f ∈ Vm has the form

f(x, y) = a0x
m + a1x

m−1y + · · ·+ amy
m ,

where the aj are arbitrary complex coefficients. The corresponding representation of su(2) is given
by

(πm(X)f)(z) =
d

dt
f(e−tXz)

∣∣∣∣
t=0

.

Letting z(t) = (x(t), y(t)) be the curve defined by z(t) = e−tXz, we have

πM (X)f =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

∣∣∣∣
t=0

.

Since dz/dt|t=0 = −Xz, we get

πm(X)f = −∂f
∂x

(X11x+X12y)− ∂f

∂y
(X21x+X22y) .

It is convenient to think about πm as a representation of sl2(C), which is isomorphic to the Lie
algebra su(2) with complex coefficients (this is called complexification). To check this, note that
every traceless complex matrix Z can be written as the sum of two traceless anti-Hermitian matrices,
namely (Z − Z†)/2 and i(Z + Z†)/2. This change has essentially no effect on the representation
theory. On the basis

H =

(
1 0

0 −1

)
X =

(
0 1

0 0

)
Y =

(
0 0

1 0

)
,

the action of π is now given by

πm(H) = −x ∂
∂x

+ y
∂

∂y
, πm(X) = −y ∂

∂x
, πm(Y ) = −x ∂

∂y
.

The action of these operators on the above basis of Vm is

πm(H)(xm−kyk) = (−m+ 2k)xm−kyk

πm(X)(xm−kyk) = (−m− k)xm−k−1yk+1

πm(Y )(xm−kyk) = −kxm−k+1yk−1 .

Note that each basis vector is an eigenvector of H, and that X (resp., Y ) shifts the vectors in such
a way that the eigenvalue is raised (resp., lowered) by 2. Note that the commutation relations for
this basis are given by

[H,X] = 2X [H,Y ] = −2Y [X,Y ] = H .

Theorem 2.8.1. The representations πm of sl2(C) defined above are irreducible. Moreover, if π is
an irreducible complex representation of sl2(C) with dimension m+ 1, then it is isomorphic to πm.

Since we are running short on time in the course, we leave the proof to [1].
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2.8.1 Exercises

Please see the final paragraph of the Introduction for my expectations regarding homework exer-
cises.

1. Let G and H be matrix Lie groups. Prove that the Lie algebra of G×H is g⊕ h.

2. Prove Proposition 2.8.2: Two representations Π1,Π2 of a connected matrix Lie group G are
isomorphic if and only if the corresponding representations π1, π2 of the Lie algebra g are
isomorphic.

3. Show that the adjoint and standard representations of the Lie group SO(3) are isomorphic.

4. Consider the usual action of SO(2) on R2. Prove that this makes R2 a real, irreducible
representation of SO(2). Prove that Schur’s Lemma fails in this case, by demonstrating an
intertwiner of this representation with itself which is not a scalar multiple of the identity.

5. Please list all of the typos and mistakes that you found in the lecture notes and exercises in
this Section. Thanks!

2.9 Representation theory of sl3(C)

Building on the example of sl2(C) from the last section, we will now describe the representations of
sl3(C). As before, this is equivalent to characterizing the representations of su(3), and hence also the
representations of SU(3). While these might seem like a few isolated examples, their representation
theory in fact contains all of the basic features of the completely general case, and is thus a very
useful model to understand.

We begin by selecting a basis for sl3(C):

H1 =

1 0 0

0 −1 0

0 0 0

 , H2 =

0 0 0

0 1 0

0 0 −1

 ,

X1 =

0 1 0

0 0 0

0 0 0

 , X2 =

0 0 0

0 0 1

0 0 0

 , X3 =

0 0 1

0 0 0

0 0 0

 ,

Y1 =

0 0 0

1 0 0

0 0 0

 , Y2 =

0 0 0

0 0 0

0 1 0

 , Y3 =

0 0 0

0 0 0

1 0 0

 .

Note that the span of H1, X1, Y1 and the span of H2, X2, Y2 are subalgebras, both isomorphic to
sl2(C). We thus already know the bracket relations inside those algebras: they are the same as in
sl2(C). Note also that [H1, H2] = 0, i.e., H1 and H2 commute. The simultaneous eigenvectors (and
the corresponding eigenvalue pairs) of H1 and H2 play a special role in the representation theory
of sl3(C).

Definition 2.9.1. Let (π, V ) be a representation of sl3(C). An ordered pair µ = (m1,m2) ∈ C2

is called a weight for π if there exists nonzero v ∈ V such that π(H1)v = m1v and π(H2)v =
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m2v. Any such vector v is called a weight vector, and the space of all such vectors is called the
weight space corresponding to the weight µ. The multiplicity of a weight is the dimension of the
corresponding weight space.

Since π is a complex representation, π(H1) has at least one eigenvalue λ1. Since π is a ho-
momorphism, π(H1) commutes with π(H2), which means that π(H2) preserves the λ1-eigenspace
of π(H1). The restriction of π(H2) to that subspace has an eigenvalue as well, say λ2. It follows
that every representation has at least one weight (m1,m2). As we saw in the previous section, the
eigenvalues of H in sl2(C) are always integers. Since we can view 〈Hj , Xj , Yj〉 as a copy of sl2(C),
this implies that m1 and m2 (being eigenvalues of H1 and H2) are integers as well.

Definition 2.9.2. A nonzero ordered pair α = (a1, a2) ∈ C2 is called a root if it is a nonzero
weight of the adjoint representation.

Recall that the definition of the adjoint representation states that π(Hj) = adHj . It follows
that (a1, a2) is a root if and only if there exists a nonzero Z ∈ sl3(C) such that [H1, Z] = a1Z
and [H2, Z] = a2Z; such a Z is called a root vector corresponding to α. By computing all of the
commutation relations of the above basis of sl3(C), one can show that there are six roots for sl3(C),
written below as (root, eigenvector) pairs.

((2,−1), X1) ((−2, 1), Y1)

((−1, 2), X2) ((1,−2), Y2)

((1, 1), X3) ((−1,−1), Y3)

Lemma 2.9.1. Let α = (a1, a2) be a root and Zα the corresponding root vector. Let µ = (m1,m2)
be a weight for a representation π, with weight vector v. Then

π(H1)π(Zα)v = (m1 + a1)π(Zα)v ,

π(H2)π(Zα)v = (m2 + a2)π(Zα)v .

Proof. First, we have that [π(H1), π(Zα)] = π([H1, Zα]) = a1π(Zα), which implies that

π(H1)π(Zα) = π(Zα)π(H1) + a1π(Zα) .

Similarly, we also have

π(H2)π(Zα) = π(Zα)π(H2) + a2π(Zα) .

The above two equations, when applied to v, yield the claim.

The above should be compared with the structure of sl2(C) from the previous section.

Definition 2.9.3. Let α1 = (2,−1) and α2 = (−1, 2), and µ1, µ2 two weights of sl3(C). Then µ1
is higher than µ2 (written µ1 ≺ µ2) if

µ1 − µ2 = aα1 + bα2

with a, b both nonnegative. A weight µ0 of a representation π of sl3(C) which is higher than all the
other weights of π is called the highest weight of π.

We are now ready to state the theorem of the highest weight for sl3(C).
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Theorem 2.9.1.

1. Every irreducible representation of sl3(C) is the direct sum of its weight spaces.

2. Every irreducible representation of sl3(C) has a unique highest weight µ. The highest weight
is of the form µ = (m1,m2) where m1 and m2 are integers.

3. Two irreducible representations of sl3(C) with the same highest weight are isomorphic.

4. For every pair (m1,m2) of non-negative integers, there exists an irreducible representation of
sl3(C) with highest weight (m1,m2).

Since there is only one lecture remaining, we will work out an example instead of talking about
the proof (which would likely take up multiple lectures anyway.)

Example: highest weight (1, 1). Let’s see how one can construct the irreducible representation
of sl3(C) with highest weight (1, 1) (which exists, by the theorem.) We begin by identifying the
highest weights of two representations we have already seen: the standard representation, and its
dual representation.

The standard representation is of course just the identity map X 7→ X. Its weight vectors are
thus the simultaneous eigenvectors of H1 and H2. These are just the standard basis vectors e1, e2, e3.
The corresponding weights are (1, 0), (−1, 1) and (0,−1). Recalling the definition of highest weight
for sl3(C), we see that (1, 0) − (−1, 1) = (2,−1) = α1 and (1, 0) − (0,−1) = (1, 1) = α1 + α2. We
conclude that the standard representation has highest weight (1, 0), and will thus denote it by π1,0.

The dual representation is the map X 7→ −Xtr. You can check this by starting from the dual
representation X 7→ (X−1)tr we defined for groups and computing the corresponding Lie algebra
representation. We can again take the standard basis vectors, and immediately see that they are
also the simultaneous eigenvectors of −Htr

1 and −Htr
2 , but now with different eigenvalues. The

weights are now (−1, 0), (1,−1), (0, 1). As before, we check that (0, 1)− (−1, 0) = (1, 1) = α1 +α2

and (0, 1)− (1,−1) = (−1, 2) = α2, meaning that (0, 1) is the highest weight of this representation.
We will thus denote it by π0,1.

Now let’s take the tensor product of the standard and the dual representation. Why should
we do this? Because the weights of tensor products behave in a very nice and intuitive way. Let’s
check this directly. Define π = π1,0 ⊗ π0,1 and recall that

π(Z) = π1,0(Z)⊗ 1 + 1⊗ π0,1(Z)

for any Z ∈ sl3(C). Let v = e1 ⊗ e3 and check that

π(H1)v = [π1,0(H1)⊗ 1 + 1⊗ π0,1(H1)](e1 ⊗ e3) = e1 ⊗ e3 + 0 = v

π(H2)v = [π1,0(H2)⊗ 1 + 1⊗ π0,1(H2)](e1 ⊗ e3) = 0 + e1 ⊗ e3 = v .

It follows that v is a weight vector of π with weight (1, 1).
How does this help us build π1,1, the irreducible representation of sl3(C) with highest weight

(1, 1)? Notice what Lemma 2.9.1 and Theorem 2.9.1 say, when put together: once we have a
weight vector (such as v above), we can “discover” all the other weight vectors by acting on v by
the images of the X1, X2, X3 and Y1, Y2, Y3. As a matter of fact, since the Xj only “raise”, and we’re
starting from the highest weight, we need only consider the action of the Yj . Since Y3 = −[Y1, Y2],
considering the action of Y1 and Y2 is sufficient. These actions, in the standard representation, are

Y1e1 = e2; Y1e2 = 0; Y1e3 = 0

Y1e1 = 0; Y1e2 = e3; Y2e3 = 0 .
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For the dual representation, it’s convenient to use a slightly different basis: f1 = e3, f2 = −e2,
f3 = e1. The action is then given by

π0,1(Y1)f1 = 0; π0,1(Y1)f2 = f3; π0,1(Y1)f3 = 0

π0,1(Y2)f1 = f2; π0,1(Y2)f2 = 0; π0,1(Y2)f3 = 0 .

To generate the other weight vectors, starting with v = e1 ⊗ f1, we will need to repeatedly apply
the operators

π1,1(Y1) = Y1 ⊗ 1 + 1⊗ π0,1(Y1) and π1,1(Y2) = Y2 ⊗ 1 + 1⊗ π0,1(Y2) .

From this we can generate the entire space, and check that it is spanned by the following vectors:
e1⊗f1, e2⊗f1, e1⊗f2, e3⊗f1 +e2⊗f2, e2⊗f2 +e1⊗f3, e2⊗f3, e3⊗f2, and e3⊗f3. The dimension
of π1,1 is thus eight.
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